DOI QR코드

DOI QR Code

A Study on the Preparation and Purification Characteristics of Graphene Oxide by Graphite Type

흑연 종류에 따른 산화 그래핀의 제조 및 정제를 통한 특성연구

  • Jeong, Kyeom (Department of Chemical Engineering, Hankyong National University) ;
  • Kim, Young-Ho (Department of Chemical Engineering, Hankyong National University)
  • 정겸 (국립한경대학교 화학공학과) ;
  • 김영호 (국립한경대학교 화학공학과)
  • Received : 2021.04.21
  • Accepted : 2021.05.25
  • Published : 2021.06.30

Abstract

Research is being conducted on graphene to provide graphene having both excellent physical as well as electrical properties in addition to unique physical properties. In this study, Hummer's method, which is a representative method for chemical exfoliation, was applied in order to investigate the possibility of the mass production of high-quality graphene oxide. Three types of graphite (graphite, crystalline graphite, and expanded graphite) were used in the preparation of graphene oxide with variations in the amount of potassium permanganate added, reaction temperature, and reaction time. Then a Fourier transform infrared spectroscopy (FT-IR), a Raman spectrometer, and a transmission electron microscope (TEM) were used to measure the quality of the prepared graphene oxide. Of the three types of graphite used in this experiment, crystalline graphite showed the highest quality. The prepared graphene oxide was then purified with an organic solvent, and an analysis conducted using energy dispersive X-ray spectroscopy (EDS). From the results of the residual values, we were able to confirm that both acid wastewater and wastewater were best purified using cyclohexane. The method for manufacturing graphene oxide as well as the method of purification using organic solvents that are presented in this study are expected to have less of an environmental impact, making them environmentally friendly. This makes them suitable for use in various industrial fields such as the film industry and for heat dissipation and as coating agents.

우수한 물리적, 전기적 특성과 독특한 물성의 특성을 갖고 있는 그래핀의 연구가 활발히 진행되면서, 대표적인 화학적 박리방법인 Hummer's 방법을 응용하여 고품질의 산화 그래핀의 대량생산 가능성을 검토하였다. 본 연구에서는 산화 그래핀의 제조에 있어서 천연흑연, 결정성 흑연, 팽창흑연을 사용하였으며, 과망간산칼륨의 첨가량, 반응온도, 반응시간을 달리하였다. 또한, 제조된 산화 그래핀의 품질을 알기위해 푸리에 변환 적외선 분광분석(fourier transform infrared spectroscopy, FT-IR), 라만분광기(raman spectroscopy), 투과 전자 현미경(transmission electron microscopy, TEM)을 이용하였으며, 결정성 흑연이 가장 좋은 품질을 나타내었다. 제조된 산화 그래핀 정제를 위해 유기용매를 사용하였으며, 에너지분산형 분광분석법(energy-dispersive X-ray spectroscopy, EDS)를 이용하여 분석한 결과 사이클로헥세인을 이용한 정제가 산 폐액과 폐수의 잔류가 거의 없었다. 본 연구에서 제시한 산화 그래핀 제조방법과 유기용매를 이용한 정제는 보다 친환경적인 방법으로 필름, 방열, 코팅제 등 다양한 산업분야에 응용이 가능할 것으로 예상된다.

Keywords

References

  1. Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., and Ruoff, R. S., "Graphene and Graphene Oxide: Synthesis, Properties, and Applications," Adv. Mater., 22(35), 3906-3924 (2010). https://doi.org/10.1002/adma.201001068
  2. Compton, O. C., Dikin, D. A., Putz, K. W., Brinson, L. C., and Nguyen, S. T., "Electrically Conductive "Alkylated" Graphene Paper via Chemical Reduction of Amine- Functionalized Graphene Oxide Paper," Adv. Mater., 22(8), 892-896 (2010). https://doi.org/10.1002/adma.200902069
  3. Mayorov, A. S., Gorbachev, R. V., Morozov, S. V., Britnell, L., Jalil, R., Ponomarenko, L. A., Blake, P., Novoselov, K. S., Watanabe, K., Taniguchi, T., and Geim, A. K., "MicrometerScale Ballistic Transport in Encapsulated Graphene at Room Temperature," Nano Lett., 11(6), 2396-2399 (2011). https://doi.org/10.1021/nl200758b
  4. Lee, C., Wei, X., Kysar, J. W., and Hone, J., "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene," Science, 321(5887), 385-388 (2008). https://doi.org/10.1126/science.1157996
  5. Schedin, F., Geim, A. K., Morozov, S. V., Hill, E. W., Blake, P., Katsnelson, M. I., and Novoselov, K. S., "Detection of Individual Gas Molecules Adsorbed on Graphene," Nat. Mater, 6(9), 652-655 (2007). https://doi.org/10.1038/nmat1967
  6. Kim, B. J., Jang, H., Lee, S.-K., Hong, B. H., Ahn, J. H., and Cho, J. H., "High-Performance Flexible Graphene Field Effect Transistors with Ion Gel Gate Dielectrics," Nano Lett., 10(9), 3464-3466 (2010). https://doi.org/10.1021/nl101559n
  7. Sel, O., Sallard, S., Brezesinski, T., Rathousky, J., Dunphy, D. R., Collord, A., and Smarsly, B. M., "Periodically Ordered Meso- and Macroporous SiO2 Thin Films and Their Induced Electrochemical Activity as a Function of Pore Hierarchy," Adv. Funct. Mater., 17(16), 3241-3250 (2007). https://doi.org/10.1002/adfm.200700079
  8. Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., Peres, N. M. R., and Geim, A. K., "Fine Structure Constant Defines Visual Transparency of Graphene," Science, 320(5881), 1308-1308 (2008). https://doi.org/10.1126/science.1156965
  9. Potts, J. R., Dreyer, D. R., Bielawski, C. W., and Ruoff, R. S., "Graphene-Based Polymer Nanocomposites," Polymer, 52(1), 5-25 (2011). https://doi.org/10.1016/j.polymer.2010.11.042
  10. Winey, K. I., Kashiwagi, T., and Mu, M., "Improving Electrical Conductivity and Thermal Properties of Polymers by the Addition of Carbon Nanotubes as Fillers," MRS Bull., 32(4), 348-353 (2007). https://doi.org/10.1557/mrs2007.234
  11. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A., "Electric Field Effect in Atomically Thin Carbon Films," Science, 306(5696), 666-669 (2004). https://doi.org/10.1126/science.1102896
  12. Yi, M., and Shen, Z., "A Review on Mechanical Exfoliation for the Scalable Production of Graphene," J. Mater. Chem. A, 3, 11700-11715 (2015). https://doi.org/10.1039/C5TA00252D
  13. Hummers, W. S., and Offeman, R. E., "Preparation of Graphitic Oxide," J. Am. Chem. Soc., 80(6), 1339-1339 (1958). https://doi.org/10.1021/ja01539a017
  14. Eda, G., Fanchini, G., and Chhowalla, M., "Large-Area Ultrathin Films of Reduced Graphene Oxide as a Transparent and Flexible Electronic Material," Nat. Nanotechnol., 3(5), 270-274 (2008). https://doi.org/10.1038/nnano.2008.83
  15. Ramanathan, T., Abdala, A. A., Stankovich, S., Dikin, D. A., Herrera-Alonso, M., Piner, R. D., Adamson, D. H., Schniepp, H. C., Chen, X., Ruoff, R. S., Nguyen, S. T., Aksay, I. A., Prud'Homme, R. K., and Brinson, L. C., "Functionalized Graphene Sheets for Polymer Nanocomposites," Nat. Nanotechnol., 3(6), 327-331 (2008). https://doi.org/10.1038/nnano.2008.96
  16. Bai, H., Li, C., and Shi, G., "Functional Composite Materials Based on Chemically Converted Graphene," Adv. Mater., 23(9), 1089-1115 (2011). https://doi.org/10.1002/adma.201003753
  17. Green, A. A., and Hersam, M. C., "Solution Phase Production of Graphene with Controlled Thickness via Density Differentiation," Nano Lett., 9(12), 4031-4036 (2009). https://doi.org/10.1021/nl902200b
  18. Viculis, L. M., Mack, J. J., Mayer, O. M., Hahn, H. T., and Kaner, R. B., "Intercalation and Exfoliation Routes to Graphite Nanoplatelets," J. Mater. Chem., 15(9), 974-978 (2005). https://doi.org/10.1039/b413029d
  19. Li, X., Zhu, Y., Cai, W., Borysiak, M., Han, B., Chen, D., Piner, R. D., Colombo, L., and Ruoff, R. S., "Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes," Nano Lett., 9(12), 4359-4363 (2009). https://doi.org/10.1021/nl902623y
  20. Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.-S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H. R., Song, Y. I., Kim, Y. J., Kim, K. S., Ozyilmaz, B., Ahn, J. H., Hong, B. H., and Iijima, S., "Roll-to-Roll Production of 30-Inch Graphene Films for Transparent Electrodes," Nat. Nanotechnol., 5, 574-578 (2010). https://doi.org/10.1038/nnano.2010.132
  21. Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., Ahn, J.-H., Kim, P., Choi, J.-Y., and Hong, B. H., "Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes," Nature, 457(7230), 706-710 (2009). https://doi.org/10.1038/nature07719
  22. Bunch, J. S., Van Der Zande, A. M., Verbridge, S. S., Frank, I. W., Tanenbaum, D. M., Parpia, J. M., Craighead, H. G., and McEuen, P. L., "Electromechanical Resonators from Graphene Sheets," Science, 315(5811), 490-493 (2007). https://doi.org/10.1126/science.1136836
  23. Liu, C., Yu, Z., Neff, D., Zhamu, A., and Jang, B. Z., "Graphene-Based Supercapacitor with an Ultrahigh Energy Density," Nano Lett., 10(12), 4863-4868 (2010). https://doi.org/10.1021/nl102661q
  24. Wei, T. T., Marthandan, G., Chong, A. Y.-L., Ooi, K.-B., and Arumugam, S., "What Drives Malaysian M-Commerce Adoption? An Empirical Analysis," Ind. Manag. Data Syst., (2009).
  25. Si, Y., and Samulski, E. T., "Synthesis of Water Soluble Graphene," Nano Lett., 8(6), 1679-1682 (2008). https://doi.org/10.1021/nl080604h
  26. Malard, L. M., Pimenta, M. A., Dresselhaus, G., and Dresselhaus, M. S., "Raman Spectroscopy in Graphene," Phys. Rep., 473(5-6), 51-87 (2009). https://doi.org/10.1016/j.physrep.2009.02.003