DOI QR코드

DOI QR Code

Characterization of Mineralogical Changes of Chrysotile and its Thermal Decomposition by Heat Treatment

열처리에 따른 백석면의 광물학적 특성 변화와 열분해 과정 연구

  • Jeong, Hyeonyi (Department of Geological and Environmental Sciences, Chonnam National University) ;
  • Moon, Wonjin (Korea Basic Science Institute, Gwangju Center) ;
  • Roh, Yul (Department of Geological and Environmental Sciences, Chonnam National University)
  • 정현이 (전남대학교 지질환경과학과) ;
  • 문원진 (한국기초과학지원연구원 광주센터) ;
  • 노열 (전남대학교 지질환경과학과)
  • Received : 2015.12.24
  • Accepted : 2016.03.28
  • Published : 2016.04.28

Abstract

Chrysotile is a 1:1 sheet silicate mineral belonging to serpentine group. It has been highlighted studies because of uses, shapes and structural characteristics of the fibrous chrysotile. However, it was designated as Class 1 carcinogen, so high attentions were being placed on detoxification studies of chrysotile. The objectives of this study were to investigate changes of mineralogical characteristics of chrysotile and to suggest detoxification mechanism of chrysotile by thermal decomposition. Samples for this study were obtained from LAB Chrysotile mine in Canada. The samples were heated in air in the range of 600 to $1,300^{\circ}C$. Changes of mineralogical characteristics such as crystal structure, shape, and chemical composition of the chrysotile fibers were examined by TG-DTA, XRD, FT-IR, TEM-EDS and SEM-EDS analyses. As a result of thermal decomposition, the fibrous chrysotile having hollow tube structure was dehydroxylated at $600-650^{\circ}C$ and transformed to disordered chrysotile by removal of OH at the octahedral sheet (MgOH) (Dehydroxylation 1). Upon increasing temperature, it was transformed to forsterite ($Mg_2SiO_4$) at $820^{\circ}C$ by rearrangement of Mg, Si and O (Dehydroxylation 2). In addition, crystal structure of forsterite had begun to transform at $800^{\circ}C$, and gradually grown 3-dimensionally to enstatite ($MgSiO_3$) by recrystallization after the heating above $1,100^{\circ}C$. And then finally transformed to spherical minerals. This study showed chrysotile structure was collapsed about $600-700^{\circ}C$ by dehydroxylation. And then the fibrous chrysotile was transformed to forsterite and enstatite, as non-hazardous minerals. Therefore, this study indicates heat treatment can be used to detoxification of chrysotile.

백석면[Chrysotile, $Mg_3Si_2O_5(OH)_4$]은 사문석군 광물에 속하는 1:1 층상규산염광물로 섬유상의 형태와 구조적 특성으로 인해 다양한 이용과 연구가 진행되었으나, 근래에는 1급 발암물질로 선정되면서 백석면의 분해에 따른 본질적인 무해화를 위한 연구의 관심도가 높아졌다. 따라서 이 연구는 열처리에 따른 백석면의 광물학적 특성 변화를 관찰하여 열분해에 따른 무해화 과정을 알아보고자 하였다. 실험은 캐나다 LAB Chrysotile 광상에서 산출되는 백석면을 이용하여 $600-1,300^{\circ}C$ 범위에서 2시간 동안 열처리를 하였으며, TG-DTA, XRD, FT-IR, SEM-EDS, TEM-EDS 분석을 통해 백석면의 결정구조, 형태 및 화학성분의 변화를 확인하여 광물학적 특성변화를 관찰하였다. 열분해 실험 결과, 섬유상의 hollow tube 구조를 가지는 백석면은 약 $600-650^{\circ}C$에서 흡열반응이 일어남에 따라 팔면체판(MgOH)에서 수산기(OH)가 제거되면서 백석면은 비정질 광물의 형태로 변화하였다(탈수화 1단계). 약 $820^{\circ}C$에서는 발열반응이 관찰되었으며 이는 Mg, Si, O의 재배열 결과 주상의 고토감람석(forsterite, $Mg_2SiO_4$)으로 상전이에 영향을 준 것으로 사료된다(탈수화 2단계). 또한 $800^{\circ}C$ 이상으로 열처리한 일부 시료에서 고토감람석 내 결정구조의 변화가 시작되었고, $1,000^{\circ}C$ 이상에서는 온도 상승에 따라 점진적인 재결정 작용 결과 3차원적으로 성장하여 구형광물로 형태 변화가 나타나며 완화휘석(enstatite, $MgSiO_3$)을 형성하였다. 따라서 이 연구는 다양한 분석법의 적용과 2시간 동안의 열처리를 통하여 백석면의 탈수화 반응에 따른 결정구조의 붕괴와 섬유상 형태의 변형을 확인하였으며, 백석면은 무해 광물인 고토감람석과 완화휘석으로 상전이 됨을 통해 백석면의 무해화 과정을 제시 할 수 있었다.

Keywords

References

  1. Ball, M.C. and Taylor, H.F.W. (1963) An X-ray study of some reactions of chrysotile. Journal of Applied Chemistry, v.13, p.145-150.
  2. Brindley, G.W. and Hayami, R. (1965) Mechanism of formation of forsterite and enstatite from serpentine. Mineralogical Magazine, v.35, p.189-195. https://doi.org/10.1180/minmag.1965.035.269.21
  3. Edington, J.W. (1974) The operation and calibration of the electron microscope. Macmillan Education UK, 1-34.
  4. Hendry, N.W. (1965) The geology, occurrence, and major uses of asbestos, Annals of the New York Academy of Sciences, v.132, n.1, p.12-21. https://doi.org/10.1111/j.1749-6632.1965.tb41086.x
  5. Koshi, K., Hayashim, H. and Sakabe, H. (1969) Biological and mineralogical studies on serpentine minerals in heat treated state. Industrial Health, v.7, p.66-85. https://doi.org/10.2486/indhealth.7.66
  6. Marconi, A. (1983) Application of infrared spectroscopy in asbestos mineral analysis. Annali dell'Istituto Superiore di Sanita, v.19, n.4, p.629-638.
  7. Martin, C.J. (1977) The thermal decomposition of chrysotile. Mineralogical Magazine, v.41, p.453-459. https://doi.org/10.1180/minmag.1977.041.320.05
  8. Madejova, J. (2003) FTIR techniques in clay mineral studies. Vibrational Spectroscopy, v.31, n.1, p.1-10. https://doi.org/10.1016/S0924-2031(02)00065-6
  9. Page, N.J. and Park, M. (1968) Chemical differences among the serpentine ''Polymorphs''. American Mineralogist, v.53, p.201-215.
  10. Perkins, R.L. and Harvey, B.W. (1993) Method for the determination of asbestos in bulk building materials. Environmental Protection Agency, 600-R-93-116.
  11. Skinner, H., Catherine W., Ross, M. and Frondel, C. (1988) Asbestos and other fibrous materials; Mineralogy, Crystal Chemistry and Health Effects. Oxford Univ. Press, 1998, Oxford University Press, p.28-33.
  12. Virta, R.L. (2003) Asbestos: Geology, Mineralogy, Mining, and Uses. U.S. Department of the Interior U.S. Geological Survey, Open-File Report 02-149.
  13. Whittaker, E.J.W. (1953) The structure of chrysotile. Acta Crystallographica, v.6, p.747. https://doi.org/10.1107/S0365110X53002118
  14. Yada, K. (1967) Study of chrysotile asbestos by high resolution electron microscope. Acta Crystallographica, v.23, p.704-707. https://doi.org/10.1107/S0365110X67003524
  15. Yada, K. (1971) Study of microstructure of chrysotile asbestos by high resolution electron microscopy. Acta Crystallographica, v.A27, p.659-664.
  16. Yariv, S. and Heller-Kallai, L. (1975) The relationship between the IR spectra of serpentines and their structures. Clay and Clay Minerals, v.23, n.2, p.145-152. https://doi.org/10.1346/CCMN.1975.0230210