DOI QR코드

DOI QR Code

Microstructural characteristics of a fresh U(Mo) monolithic mini-plate: Focus on the Zr coating deposited by PVD

  • Received : 2020.12.01
  • Accepted : 2021.02.26
  • Published : 2021.08.25

Abstract

Within the frame of the EMPIrE test, four monolithic mini-plates were irradiated in the ATR reactor. In two of them, the monolithic U(Mo) foil had been PVD-coated with Zr before the plate manufacturing. Extensive microstructural characterizations were performed on a fresh archive mini-plate, using Optical Microscopy (OM), Scanning Electron Microscopy (SEM) combined with Energy Dispersive Spectroscopy (EDS), Electron Backscattered Diffraction (EBSD) and Focused Ion Beam (FIB)/Transmission Electron Microscopy (TEM) with nano EDS. A particular attention was paid to the examination of the U(Mo) foil, the PVD coating, the cladding/Zr and Zr/U(Mo) interfaces. The Zr coating has a thickness around 15 ㎛. It has a columnar microstructure and appears dense. The cohesion of the cladding/Zr and Zr/U(Mo) interfaces seems to be satisfactory. An almost continuous layer with a thickness of the order of 100-300 nm is present at the cladding/Zr interface and corresponds to an oxidized part of the Zr coating. At the Zr/U(Mo) interface, a thin discontinuous layer is observed. It could correspond to locally oxidized U(Mo). This work provides a basis for interpreting the results of characterizations on EMPIrE irradiated plates.

Keywords

Acknowledgement

This work was supported by the European Commission in the framework of HORIZON 2020 through Grant Agreement 754378 in the LEU-FOREvER project and preparatory work at TUM was supported by a combined grant (FRM1318) from the Bundesministerium fur Bildung und Forschung and the Bayerisches Staatsministerium fur Bildung und Kultus, Wissenschaft und Kunst.

References

  1. Y.S. Kim, Uranium intermetallic fuels (U-Al, U-Si, U-Mo), Comprehensive Nuclear Materials 3 (14) (2012) 392-422.
  2. Safety evaluation report related to the evaluation of Low Enriched Uranium silicide-aluminum dispersion fuel for use in non-power reactors, U.S. Nuclear Regulatory Commission (1988). NUREG-1313.
  3. S. Van Den Berghe, P. Lemoine, Review of 15 years of high-density, low enriched UMo dispersion fuel development for research reactors in Europe, Nucl. Eng. Technol. 46 (2014) 125-146. https://doi.org/10.5516/NET.07.2014.703
  4. M.K. Meyer, J. Gan, J.F. Jue, D.D. Keiser, E. Perez, A. Robinson, D.M. Wachs, N. Woolstenhulme, G.L. Hofman, Y.S. Kim, Irradiation performance of U-Mo monolithic fuel, Nucl. Eng. Technol. 46 (2014) 169-182. https://doi.org/10.5516/NET.07.2014.706
  5. G.A. Moore, M.C. Marshall, Co-rolled U10Mo/Zirconium-Barrier-Layer Monolithic Fuel Foil Fabrication Process, Idaho National Laboratory, 2010. INL-EXT-10-17774.
  6. J.F. Jue, D.D. Keiser, C.R. Breckenridge, G.A. Moore, M.K. Meyer, Microstructural characteristics of HIP-bonded monolithic nuclear fuels with a diffusion barrier, J. Nucl. Mater. 448 (2014) 250-258. https://doi.org/10.1016/j.jnucmat.2014.02.004
  7. R. Newell, A. Mehta, Y.J. Park, D.D. Keiser, Y.H. Sohn, Interdiffusion, reactions and phase transformations observed during fabrication of low enriched uranium monolithic fuel system for research and test reactors, Defect Diffusion Forum 383 (2018) 10-16. https://doi.org/10.4028/www.scientific.net/DDF.383.10
  8. R. Newell, A. Mehta, Y.J. Park, D.D. Keiser, J.J. Cole, Y.H. Sohn, Microstructural characteristics of plasma sprayed, electroplated, and co-rolled Zr diffusion barriers in hot isostatic pressed low enriched U-10 wt% Mo monolithic fuel plates, J. Nucl. Mater. 523 (2019) 91-100. https://doi.org/10.1016/j.jnucmat.2019.05.056
  9. D.D. Keiser, J.F. Jue, B. Miller, J. Gan, A. Robinson, J. Madden, Observed changes in as-fabricated U-10Mo monolithic fuel microstructures after irradiation in the Advanced Test Reactor, J. Occup. Med. 69 (2017) 2538-2545.
  10. J.F. Jue, D.D. Keiser, B.D. Miller, J.W. Madden, A.B. Robinson, B.H. Rabin, Effects of irradiation on the interface between U-Mo and zirconium diffusion barrier, J. Nucl. Mater. 499 (2018) 567-581. https://doi.org/10.1016/j.jnucmat.2017.10.072
  11. I. Glagolenko, G. Housley, A. Robinson, M. Bybee, M. Hammond, J. Nielsen, D. Crawford, J. Wiest, J. Jacobson, The European Miniplate Irradiation Experiment (EMPIrE), RRFM, Jordan, 2019. March 24-28.
  12. C. Steyer, B. Baumeister, C. Schwartz, W. McCollough, C. Reiter, F. Alder, T. Dirks, D. Bach, T. Huber, H. Breitkreutz, W. Petry, B. Stepnik, M. Grasse, C. Moyroud, R. Johnson, R. Mayfield, G. Argon, Production of Monolithic UMo Plates for the EMPIrE Irradiation Experiment, RERTR, Antwerp, Belgium, 2016. October 23-27.
  13. B. Stepnik, M. Grasse, C. Jarousse, D. Geslin, J. Schulthess, I. Glagolenko, A. Yacout, S. Bhattacharya, T. Wiencek, M. Pellin, S. Van Den Berghe, A. Leenaers, H. Breitkreutz, T.K. Huber, T. Zweifel, W. Petry, M. Delpech, H. Palancher, Y. Calzavara, H. Guyon, Manufacturing Progress Status of EMPIrE UMo Irradiation Experiment, RERTR, Antwerp, Belgium, 2016. October 23-27.
  14. I. Glagolenko, N. Woolstenhulme, M. Lillo, J. Nielsen, D. Choe, J. Navarro, C. Jensen, D. Crawford, W. Jones, S. Snow, B. Hawkes, J. Wiest, D. Keiser, K. Holdaway, J. Schulthess, B. Rabin, Status Update on Mini-Plate Experiment Designs Planned for Irradiation in the Advanced Test Reactor, RRFM, Berlin, Germany, 2016. March 13-17.
  15. X. Iltis, I. Zacharie-Aubrun, H.J. Ryu, J.M. Park, A. Leenaers, A.M. Yacout, D.D. Keiser, F. Vanni, B. Stepnik, T. Blay, N. Tarisien, C. Tanguy, H. Palancher, Microstructure of as-atomized and annealed U-Mo7 particles: a SEM/EBSD study of grain growth, J. Nucl. Mater. 495 (2017) 249-266. https://doi.org/10.1016/j.jnucmat.2017.07.056
  16. K. Thomsen, N.H. Schmidt, A. Bewick, K. Larsen, Improving the accuracy of orientation measurements using EBSD, Microsc. Microanal. 19 (2013) 724-725. https://doi.org/10.1017/S1431927613005618
  17. E.A. Nyberg, D.E. Burkes, V.V. Joshi, C.A. Lavender, The Microstructure of Rolled Plates from Cast Billets of U-10Mo Alloys, Pacific Northwest National Laboratory, 2015. PNNL-24160.
  18. Y. Park, N. Eriksson, D.D. Keiser, J.F. Jue, B. Rabin, G. Moore, Y.H. Sohn, Microstructural anomalies in hot-isostatic U-10 wt.% Mo fuel plates with Zr diffusion barrier, Mater. Char. 103 (2015) 50-57. https://doi.org/10.1016/j.matchar.2015.03.015
  19. X. Hu, X. Wang, V.V. Joshi, C.A. Lavender, The effect of thermomechanical processing on second phase particle redistribution in U-10 wt% Mo, J. Nucl. Mater. 500 (2018) 270-279. https://doi.org/10.1016/j.jnucmat.2017.12.042
  20. A. Devaraj, L. Kovarik, E. Kautz, B. Arey, S. Jana, C. Lavender, V. Joshi, Grain boundary engineering to control the discontinuous precipitation in multicomponent U10Mo alloy, Acta Mater. 151 (2018) 181-190. https://doi.org/10.1016/j.actamat.2018.03.039
  21. L. Kovarik, A. Devaraj, C. Lavender, V. Joshi, Crystallographic and compositional analysis of impurity phase U2MoSi2C in UMo alloys, J. Nucl. Mater. 519 (2019) 287-291. https://doi.org/10.1016/j.jnucmat.2019.03.044
  22. C.S. Chen, C.P. Liu, C.Y.A. Tsao, H.G. Yang, Study of mechanical properties of PVD ZrN films, deposited under positive and negative substrate bias conditions, Scripta Mater. 51 (2004) 715-719. https://doi.org/10.1016/j.scriptamat.2004.06.005
  23. D.S. Rickerby, S.J. Bull, Engineering with surface coatings: the role of coating microstructure, Surf. Coating. Technol. 39/40 (1989) 315-328. https://doi.org/10.1016/0257-8972(89)90065-0
  24. A.Z. Moshfegh, PVD growth method: physics and technology, in: Physics and Technology of Thin Films, World Scientific Publishing company, 2004, pp. 28-53.
  25. D.E. Newbury, N.W.M. Ritchie, Is scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) quantitative? Scanning 35 (2013) 141-168. https://doi.org/10.1002/sca.21041
  26. A.J. Clarke, K.D. Clarke, R.J. McCabe, C.T. Necker, P.A. Papin, R.D. Field, A.M. Kelly, T.J. Tucker, R.T. Forsyth, P.O. Dickerson, J.C. Foley, H. Swenson, R.M. Aikin, D.E. Dombrowski, Microstructural evolution of a uranium-10 wt.% molybdenum alloy for nuclear reactor fuels, J. Nucl. Mater. 465 (2015) 784-792. https://doi.org/10.1016/j.jnucmat.2015.07.004
  27. L.R. Hubbard, C. Arendt, D. Dye, C. Clayton, U-10Mo Baseline Fuel Fabrication Process Description, Pacific Northwest National Laboratory, 2017. PNNL-26880.
  28. S. Jana, N. Overman, T. Varga, C. Lavender, V.V. Joshi, Phase transformation kinetics in rolled U-10 wt.% Mo foil: effect of post-rolling heat treatment and prior γ-UMo grain size, J. Nucl. Mater. 496 (2017) 215-226. https://doi.org/10.1016/j.jnucmat.2017.09.030
  29. W.E. Frazier, S. Hu, N. Overman, R. Prabhakaran, C. Lavender, V.V. Joshi, Recrystallization kinetics of cold-rolled U-10 wt% Mo, J. Nucl. Mater. 513 (2019) 56-61. https://doi.org/10.1016/j.jnucmat.2018.10.046
  30. Microbeam Analysis - Electron Backscattered Diffraction - Measurement of Average Grain Size, 2011. ISO 13067 international standard.
  31. J.F. Humphreys, Recrystallization and recovery, in: Materials Science and Technology, Wiley-VCH Verlag GmBH & Co KGaA, 2006, pp. 373-398.
  32. N.E. Woolstenhulme, D. Wachs, M. Meyer, Design and testing of prototypic elements containing monolithic fuel, RERTR, Santiago, Chile (2011). October 23-27.
  33. D. Frazer, D. Jadernas, N. Bolender, J. Madden, J. Giglio, P. Hosemann, Elevated temperature microcantilever testing of fresh U-10Mo fuel, J. Nucl. Mater. 526 (2019) 151746. https://doi.org/10.1016/j.jnucmat.2019.151746
  34. N.R. Overman, S. Jana, D.P. Field, C. Lavender, V.V. Joshi, An electron backscatter analysis of grain boundary initiated discontinuous precipitation in U-10Mo, J. Nucl. Mater. 529 (2020) 151940. https://doi.org/10.1016/j.jnucmat.2019.151940
  35. P.A. Dearnley, Introduction to Surface Engineering, Cambridge University Press, 2017.
  36. M. Schaffer, B. Schaffer, Q. Ramasse, Sample preparation for atomic-resolution STEM at low voltages by FIB, Ultramicroscopy 114 (2012) 62-71. https://doi.org/10.1016/j.ultramic.2012.01.005
  37. E. Perez, B. Yao, D.D. Keiser, Y.H. Sohn, Microstructural analysis of as-processed U-10wt.%Mo monolithic fuel plate in AA6061 matrix with Zr diffusion barrier, J. Nucl. Mater. 402 (2010) 8-14. https://doi.org/10.1016/j.jnucmat.2010.04.016
  38. Y. Park, J. Yoo, K. Huang, D.D. Keiser, J.F. Jue, B. Rabin, G. Moore, Y.H. Sohn, Growth kinetics and microstructural evolution during hot isostatic pressing of U-10 wt% Mo monolithic fuel plate in AA6061 cladding with Zr diffusion barrier, J. Nucl. Mater. 447 (2014) 215-224. https://doi.org/10.1016/j.jnucmat.2014.01.018
  39. N.E. Woolstenhulme, S.C. Taylor, G.A. Moore, D.M. Sterbenz, Non-destructive Examination of Fuel Plates for the RERTR Fuel Development Experiments, Idaho National Laboratory, 2012. INL/EXT-12-27225.
  40. M. Andrzekczuk, P. Plocinski, W. Zielinski, K.J. Kurzydlowski, TEM characterization of the artefacts induced by FIB in austenitic stainless steel, J. Microsc. 237 (2010) 439-442. https://doi.org/10.1111/j.1365-2818.2009.03288.x
  41. Y. Park, N. Eriksson, R. Newell, D.D. Keiser, Y.H. Sohn, Phase decomposition of γ-U (bcc) in U-10 wt% Mo fuel alloy during hot isostatic pressing of monolithic fuel plate, J. Nucl. Mater. 480 (2016) 271-280. https://doi.org/10.1016/j.jnucmat.2016.08.022
  42. T.C. Kaspar, C.L. Arendt, D.L. Neal, S.L. Riechers, C. Rutherford, A. Shemer-Kohrn, S.R. Spurgeon, L.E. Sweet, V.V. Joshi, C.A. Lavender, R.W. Shimskey, Characterization of surface layers formed on DU10Mo ingots after processing steps and high humidity exposure, J. Nucl. Mater. 514 (2019) 28-39. https://doi.org/10.1016/j.jnucmat.2018.11.022