• 제목/요약/키워드: TDC control

검색결과 85건 처리시간 0.031초

마찰이 있는 서보의 변형된 시지연제어 (Modified Time Delay Control for Servo with Friction)

  • Park, J.H.;Kim, Y.M.
    • 한국정밀공학회지
    • /
    • 제14권6호
    • /
    • pp.106-113
    • /
    • 1997
  • A new algorithm based upon TDC (Time Delay Control) is proposed to improve the robustness of TDC performance in systems where the stick-slip friction is strong. Experiments were performed at the different levels of friction. The reponses of the TDC and the modified TDC were compared each other, and against those of a PID controller with an anti-windup. The results show that the TDC and the modified TDC equally perform better than the PID, and that the modified TDC performs consistently well even with variations in the friction level while the TDC does not.

  • PDF

TDC기법을 이용한 유압식 열연압연기의 롤갭제어 (The roll gap control hydraulic hot strip mill using time delay control method)

  • 홍성철;현장환;이정오
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1469-1472
    • /
    • 1996
  • Hydraulic Hot Strip Mill (HHSM) rolls materials whose size and stiffness are various. So a roll gap controller for HHSM was designed using TDC(Time Delay Control) method. The performance of the roll gap control was evaluated through computer simulations. The simulation results indicate that TDC method show excellent robustness and tracking properties against PID control method in various rolling conditions.

  • PDF

시간지연 제어를 이용한 엔진 토크 및 엔진/자동변속기 속도 제어 시스템 (Engine torque and engine/automatic trandmission speed control systems using time delay control)

  • 송재복;이승만
    • 제어로봇시스템학회논문지
    • /
    • 제2권2호
    • /
    • pp.81-87
    • /
    • 1996
  • Time delay control(TDC) law has been recently suggested as an effective control technique for nonlinear time-varying systems with uncertain dynamics and/or unpredictable disturbances. This paper focuses on the applications of the TDC algorithm to torque control of an engine system and speed control of an engine/automatic transmission system. Through the stability analysis of the engien system based on TDC, determination of the appropriate time delay and control factor is investigated. It was revealed that the size of time delay of the TDC law should be greater than that of transport delay of the system for both stability and better control performance. Simulation and experimental results for the engine torque control and engine/automatic transmission speed control systems show both relatively good command following and disturbance rejection properties. However, TDC controller shows rather slow responses when applied to the system with large transport delay.

  • PDF

TDC와 ETDO를 이용한 유도무기용 전기식 날개구동장치의 위치제어 (A Position Control of an Electrical Fin Actuator for Guided Missile using TDC and ETDO)

  • 이영철;이흥호
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제55권8호
    • /
    • pp.353-362
    • /
    • 2006
  • This paper illustrates the practical design procedure on a position control of an electrical fin actuator for the guided missile using Time Delay Control(TDC) and Enhanced Time Delay Observer(ETDO). Since TDC is robust to the model uncertainties such as the parameter variation and the external disturbance, it has been frequently used in nonlinear control systems. For a position control of an electrical fin actuator in the missile system, TDC requires the velocity sensor as well as the position sensor. To resolve the problems of the cost, the space and the malfunction due to the velocity sensor, ETDO is used as the velocity observer. ETDO is enhanced version of TDO that has the problems of the reconstruction errors and the restriction on selecting its gains. To maximize the control performance, the parameters of ETDO are optimized by using the genetic algorithm. The effectiveness of this approach is proved through a series of simulation studies and experiments, and the designed controller is compared with the typical TDC and TDC using the reduced oder observer.

시간지연추정제어기에 관한 리뷰 (Review on controllers with a time delay estimation)

  • 이효직;윤지섭
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1120-1124
    • /
    • 2005
  • We reviewed controllers with a time delay estimation in this paper. Time delay control (TDC) and sliding mode control (SMC) are well known robust control schemes. Basically, the TDC has a main characteristic called a time delay estimation from which we can estimate the total uncertainty of a system. . The TDC causes the stick-slip in the case of systems with a friction. The so-called TDCSA which are short for TDC with switching action was developed to reduce the stick-slip. The TDC has the additional switching action term in the TDC structure. In the other hand, the SMC dose not have a time delay estimation but instead it can estimate the system uncertainty through the switching action. The SMC has a difficulty to estimate the total uncertainty of a system because it does not have a time delay estimation. In order to solve the difficulty, some control schemes were developed. Among them, we need to focus our attention on two control schemes: SMCPE and SMCTE, which are short for sliding mode control with a perturbation estimation and sliding mode control with a time delay estimation, respectively. In this paper, we analyzed and compared the characteristic of above three controllers. Even though the motives for the development of three control schemes are different, three control schemes have much in common in terms of their controller structures.

  • PDF

Control of Humanoid Robots Using Time-Delay-Estimation and Fuzzy Logic Systems

  • Ahn, Doo Sung
    • 드라이브 ㆍ 컨트롤
    • /
    • 제17권1호
    • /
    • pp.44-50
    • /
    • 2020
  • For the requirement of accurate tracking control and the safety of physical human-robot interaction, torque control is basically desirable for humanoid robots. Because of the complexity of humanoid robot dynamics, the TDC (time-delay control) is practical because it does not require a dynamic model. However, there occurs a considerable error due to discontinuous non-linearities. To solve this problem, the TDC-FLC (fuzzy logic compensator) is applied to humanoid robots. The applied controller contains three factors: a TDE (time-delay estimation) factor, a desired error dynamic factor, and FLC to suppress the TDE error. The TDC-FLC is easy to execute because it does not require complicated humanoid dynamic calculations and the heuristic fuzzy control rules are intuitive. TDC-FLC is implemented on the whole body of a humanoid, not on biped legs even though it is performed by a virtual humanoid robot. The simulation results show the validity of the TDC-FLC for humanoid robots.

로봇 매니퓰레이터를 위한 시간지연추정과 내부모델개념을 결합한 강인제어기에 관한 연구 (Robust Trajectory Control of Robot Manipulators Using Time Delay Estimation and Internal Model Concept)

  • 조건래;장평훈;정제형
    • 대한기계학회논문집A
    • /
    • 제28권8호
    • /
    • pp.1075-1086
    • /
    • 2004
  • In this paper, Time Delay Control(TDC) for robot manipulators is analyzed and its problems are founded. In order to remedy the problems, the enhanced controller is proposed and analyzed. The effect of friction associated with TDC is reported and its cause is presented. Through the analysis, simulation and experiment, it is shown that the friction effect causes serious degradation in control performance and that it is a result of the error of Time Delay Estimation(TDE) in TDC. In order to remedy the problems, TDC combined with Internal Model Control(IMC) concept is proposed. The proposed compensator is effective enough to handle the bad effect of friction, and is so simple and efficient as to match positive attribute of TDC. The simulation and experimental results show the effectiveness of proposed controller against the friction of the robot manipulators.

시간지연 제어기법을 이용한 회전체 진동제어 (Vibration Control of Rotor Using Time Delay Control)

  • 현동길;최우균;신윤덕;김영배
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1828-1831
    • /
    • 2005
  • Time Delay Control (TDC) method was proposed as a promising technique in the robust control area, where the plants have unknown dynamics with parameter variations and substantial disturbances are present. In this paper we concerns vibration control of rotor system using TDC. Based on the rotor system model, the TDC is designed, and the PD-controller is also designed for comparison. The simulation results show that the TDC is much robust than the PD-controller to the unknown dynamics with parameter variations and disturbances.

  • PDF

일반적인 플랜트에 대한 시간지연을 이용한 제어기법의 안정성 해석 (Stability Analysis of Time Delay Controller for General Plants)

  • 권오석;장평훈;정제형
    • 대한기계학회논문집A
    • /
    • 제26권6호
    • /
    • pp.1035-1046
    • /
    • 2002
  • Time Delay Control(TDC) is a robust nonlinear control scheme using Time Delay Estimation(TDE) and also has a simple structure. To apply TDC to a real system, we must design Time Delay Controller to guarantee stability. The earlier research stated sufficient stability condition of TDC for general plants. In that research, it was assumed that time delay is infinitely small. But, it is impossible to implement infinitely small time delay in a real system. So, in this research we propose a new sufficient stability condition of TDC for general plants with finite time delay. And the simulation results indicate that the previous sufficient stability condition does not work even for small time delay, while our proposed condition works well.

불확실성을 갖는 단일입출력 시스템에 대한 TDC의 안정성/강인성 해석 (Stability/Robustness of TDC for SISO Systems with Significant Unmodelled Dynamics)

  • 이정완
    • 산업기술연구
    • /
    • 제20권B호
    • /
    • pp.35-43
    • /
    • 2000
  • Time Delay Control (TDC) method was proposed as a promising technique in the robust control area, where the plants have unknown dynamics with parameter variations and substantial disturbances are present. In this paper, based on the concepts of TDC, author propose a model reference control method for input/output model. The stability and robustness of the closed system has been analyzed for a class of linear time invarient (LTI) system. Then, in a simulation study, author's design method has been applied to a second order system, the result of which confirmed that the proposed control method performs satisfactorily as predicted.

  • PDF