• Title/Summary/Keyword: TBC(Thermal Barrier Coating)

Search Result 86, Processing Time 0.034 seconds

Thermal Barrier Coating Durability Testing Trends for Thrust Chamber of Liquid-propellant Rocket Engine (액체로켓엔진 연소기 열차폐코팅 내구성 시험 기술동향)

  • Lee, Keum-Oh;Ryu, Chul-Sung;Lim, Byoung-Jik;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.603-615
    • /
    • 2012
  • Durability testing method trends of the thermal barrier coating(TBC) for the combustion chamber of the liquid-propellant rocket engine has been investigated. Many types of the durability testing method such as the mechanical tests to measure surface cohesion force, the thermal fatigue tests with laser, furnace, burner or plasma, the small scale combustion tests using injectors, and the thermo-mechanical fatigue tests were observed. The TBC with sufficient durability can be selected for the use of combustion chamber through such specimen-level tests and the durability can be verified by the tests using the real scale combustion chambers.

  • PDF

Determination of Optimum Condition in Plasma Spraying Process (플라즈마용사공정에서의 최적 조건 결정에 관한 연구)

  • 최경수;박동화
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.2
    • /
    • pp.155-162
    • /
    • 1996
  • A Taguchi methodology study of the plasma spraying thermal barrier coating (TBC) layer is presented. The experiment parameters were designed by a L8-style orthogonal arrays approach. A Taguchi analysis was conduc-ted through the results of the coating properties which were affected by plasma spraying parameters. Zirconia (partially stbilized with ytrria: PSZ) was sprayed on TiAl intermetallic compound substrates, The coating layer was characterized by thickness microstructure and porosity using SEM and Image analyzer. The coating quali-ties are discussed with respect to thermal barrier effect thermal cycling test6 and adhesion strength test. An optimum condition of plasma spraying process which are derived from the Taguchi analysis could be found for high quality TBC.

  • PDF

High Temperature Oxidation Behavior of Plasma Sprayed $ZrO_2$ Having Functionally Gradient Thermal Barrier Coating

  • Park, Cha-Hwan;Lee, Won-Jae;Cho, Kyung-Mox;Park, Ik-Min
    • Corrosion Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.155-160
    • /
    • 2003
  • Plasma spraying technique was used to fabricate functionally graded coating (FGC) of NiCrAIY/YSZ 8wt%$Y_2O_3-ZrO_2$ on a Co-base superalloy (HAYNES 188) substrate. Six layers were coated on the substrate for building up compositionally graded architecture. Conventional thermal barrier coating (TBC) of NiCrAIY/SZ with sharp interface was also fabricated. As-coated FGC and TBC samples were exposed at the temperature of $1100^{\circ}C$ for 10, 50, 100 hours in air. Microstructural change of thermally exposed samples was examined. Pores and microcracks were formed in YSZ layer due to evolution of thermal internal stress at high temperature. The amount of pores and microcracks in YSZ layer were increased with increasing exposure time at high temperature. High temperature oxidation of coatings occurred mainly at the NiCrAIY/YSZ interface. In comparison with the case of TBC. the increased area of the NiCrAIY/YSZ interface in FGC is likely to attribute to forming the higher amount of oxides.

Top Coating Design Technique for Thermal Barrier of Gas Turbine (가스터빈의 열차폐용 탑코팅 설계기술)

  • Koo, Jae-Mean;Lee, Si-Young;Seok, Chang-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.8
    • /
    • pp.802-808
    • /
    • 2013
  • Thermal barrier coating (TBC) is used to protect substrates and extend the operating life of gas turbines in power plant and aeronautical applications. The major causes of failure of such coatings is spallation, which results from thermal stress due to a thermal expansion coefficient mismatch between the top coating and the bond coating layers. In this paper, the effects of the material properties and the thickness of the top coating layer on thermal stresses were evaluated using the finite element method and the equation for the thermal expansion coefficient mismatch stress. In addition, we investigated a design technique for the top coating whereby thermal resistance is exploited.

Heat Transfer Characteristics of Thruster Controller According to Thickness of Thermal Barrier Coating (열차폐 코팅의 두께에 따른 추력 조절기의 열전달 특성 연구)

  • Jang, Han Na;Lee, Ji Hoon;Kwak, Jae Su;Cho, Jin Yeon;Kim, Jae Hoon;Ko, Jun Bok;Heo, Jun Young
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.4
    • /
    • pp.15-21
    • /
    • 2017
  • In this study, the surface heat transfer coefficient of the 3D model of a thruster regulator in the high temperature and high pressure environment was estimated using the commercial CFD code. The thermal barrier coating (TBC) on the surface of the thruster regulator was modeled and the effect of the thickness of the TBC on the temperature of the thruster regulator was investigated. The thickness of the TBC was varied from $100{\mu}m$ to $500{\mu}m$. Results showed that the temperature of the surface and the inside the thruster regulator was lower for the thicker TBC case.

Numerical Simulation of Effects of TGO Growth and Asperity Ratio on Residual Stress Distributions in TC-BC-TGO Interface Region for Thermal Barrier Coatings (열차폐 코팅의 TGO 성장과 형상비에 따른 TC-BC-TGO 계면에서의 잔류응력 변화에 대한 유한요소해석)

  • Jang, Jung-Chel;Choi, Sung-Churl
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.7 s.290
    • /
    • pp.415-420
    • /
    • 2006
  • The residual stresses in the interface region of the Thermal Barrier Coating (TBC)/Thermally Grown Oxide (TGO)/Bond Coat (BC) were calculated on the TBC-coated superalloy samples using a Finite Element Method (FEM). It was found that the stress distribution of the interface boundary was dependent upon mainly the geometrical shape or its aspect ratio and the thickness of TGO layer, which was formed by growth and swelling behavior of oxide layer. Maximum compressive residual stress in the TBC/TGO interface is higher than that of the TGO/bond coat interface, and the tensile stress had nothing to do with change of an aspect ratio. The compressive residual stresses in the TBC/TGO and TGO/bond coat interface region increased gradually with the TGO growth.

A Study on the high Temperature Properties of the Graded Thermal Barrier Coatings by APS and PAS (APS법으로 제조된 열장벽 피막과 PAS법으로 제조된 열장벽 성형체의 고온 물성에 관한 연구)

  • 강현욱;권현옥;한주철;송요승;홍상희;허성강;김선화
    • Journal of Surface Science and Engineering
    • /
    • v.32 no.2
    • /
    • pp.144-156
    • /
    • 1999
  • Thermal Barrier Coating with Functional Gradient Materials (FGM-TBC) can play an important role to protect the parts from harmful environments in high temperatures such as oxidation, corrosion, and wear and to improve the efficiency of aircraft engine by lowering the surface temperature on turbine blade. FGM-TBC can increase the life spans of product and improve the operating properties. Therfore, in this study the evaluations of mechanical and thermal properties of FGM-TBC such as fatigue, oxidation and wear-resistance at high temperatures have been conducted. The samples of both the TBC with 2, 3, 5 layers (YSZ/NiCrAlY) to be produced by Air Plasma Spray method (APS) and the bulk TBC with 6 layers to be produced by Plasma Assisted Sintering method (PAS) were used. Furthermore, residual stress, bond strength, and thermal conductivity were evaluated. The average thickness of the APS was 500$\mu\textrm{m}$ to 600$\mu\textrm{m}$ and the average thickness of the PAS was 3mm. The hardness number of the top layer of APS was 750 Hv to 810Hv and that of PAS was 950 Hv to 1440Hv. The $ZrO_2$ coating layer of APS was composed of tetragonal structure after spraying as the result of XRD analysis. As shown in the results of the high temperature wear test, the 3 layer coating of APS had the best wear resistance at $800^{\circ}C$ and the 5 layer coating of APS had the best wear resistance at $600^{\circ}C$. But, these coatings had the tendency of the low-temperature softening at $300^{\circ}C$. The main mechanism of wear was the adhesive wear and the friction coefficient of coatings was increased as increasing the test temperatures. A s results of thermal conductivity test, the ${\Delta}T$ of the APS coating was increased as number of layer and the range of thermal conductivity of the PAS was $800^{\circ}C$ to $1000^{\circ}C$.

  • PDF

Durability Evaluation of Thermal Barrier Coating (TBC) According to Growth of Thermally Grown Oxide (TGO) (TGO 성장을 고려한 열차폐코팅의 내구성평가)

  • Song, Hyun Woo;Moon, Byung Woo;Choi, Jae Gu;Choi, Won Suk;Song, Dongju;Koo, Jae-Mean;Seok, Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1431-1434
    • /
    • 2014
  • The thermal barrier coating (TBC) applied to a gas turbine can be damaged by repeated thermal fatigue during operation, so an evaluation of its durability is needed. Thermally grown oxide (TGO) is generated inside the TBC in a high-temperature environment. The growth of TGO is known to be the main cause of damage to the TBC. Therefore, the durability of TBC should be evaluated according to the growth of TGO. In this research, Kim et al.'s work on the growth of TGO with aging was used as a basis for finite element analysis. The relationship between stress and aging was derived from the finite element analysis results. The durability of the TBC with aging was evaluated through a comparison between the results of the finite element analysis and a bond strength test.