• Title/Summary/Keyword: T.U.R.P.

Search Result 257, Processing Time 0.029 seconds

NEHARI MANIFOLD AND MULTIPLICITY RESULTS FOR A CLASS OF FRACTIONAL BOUNDARY VALUE PROBLEMS WITH p-LAPLACIAN

  • Ghanmi, Abdeljabbar;Zhang, Ziheng
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1297-1314
    • /
    • 2019
  • In this work, we investigate the following fractional boundary value problems $$\{_tD^{\alpha}_T({\mid}_0D^{\alpha}_t(u(t)){\mid}^{p-2}_0D^{\alpha}_tu(t))\\={\nabla}W(t,u(t))+{\lambda}g(t){\mid}u(t){\mid}^{q-2}u(t),\;t{\in}(0,T),\\u(0)=u(T)=0,$$ where ${\nabla}W(t,u)$ is the gradient of W(t, u) at u and $W{\in}C([0,T]{\times}{\mathbb{R}}^n,{\mathbb{R}})$ is homogeneous of degree r, ${\lambda}$ is a positive parameter, $g{\in}C([0,T])$, 1 < r < p < q and ${\frac{1}{p}}<{\alpha}<1$. Using the Fibering map and Nehari manifold, for some positive constant ${\lambda}_0$ such that $0<{\lambda}<{\lambda}_0$, we prove the existence of at least two non-trivial solutions

${H^1}({\Omega})$-NORM ERROR ANALYSIS UNDER NUMERICAL QUADRATURE RULES BY THE P-VERSION OF THE FINITE ELEMENT METHOD

  • Kim, Ik-Sung;Kim, Chang-Geun;Song, Man-Suk
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.2
    • /
    • pp.467-489
    • /
    • 1994
  • Let $\Omega$ be a closed and bounded polygonal domain in R$^2$, or a closed line segment in R$^1$ with boundary $\Gamma$, such that there exists an invertible mapping T : $\Omega$ \longrightarrow $\Omega$ with the following correspondence: x$\in$$\Omega$ ↔ x = T(x) $\in$$\Omega$, (1.1) and (1.2) t $\in$ U$\sub$p/($\Omega$) ↔ t = to T$\^$-1/ $\in$ U$\sub$p/($\Omega$), where $\Omega$ denotes the corresponding reference elements I = [-1,1] and I ${\times}$ I in R$^1$ and R$^2$ respectively, (1.3) U$\sub$p/($\Omega$) = {t : t is a polynomial of degree $\leq$ p in each variable on $\Omega$}, and (1.4) U$\sub$p/($\Omega$) = {t : t = to T $\in$ U$\sub$p/($\Omega$)}.(omitted)

  • PDF

Euler-Maruyama Numerical solution of some stochastic functional differential equations

  • Ahmed, Hamdy M.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.11 no.1
    • /
    • pp.13-30
    • /
    • 2007
  • In this paper we study the numerical solutions of the stochastic functional differential equations of the following form $$du(x,\;t)\;=\;f(x,\;t,\;u_t)dt\;+\;g(x,\;t,\;u_t)dB(t),\;t\;>\;0$$ with initial data $u(x,\;0)\;=\;u_0(x)\;=\;{\xi}\;{\in}\;L^p_{F_0}\;([-{\tau},0];\;R^n)$. Here $x\;{\in}\;R^n$, ($R^n$ is the ${\nu}\;-\;dimenional$ Euclidean space), $f\;:\;C([-{\tau},\;0];\;R^n)\;{\times}\;R^{{\nu}+1}\;{\rightarrow}\;R^n,\;g\;:\;C([-{\tau},\;0];\;R^n)\;{\times}\;R^{{\nu}+1}\;{\rightarrow}\;R^{n{\times}m},\;u(x,\;t)\;{\in}\;R^n$ for each $t,\;u_t\;=\;u(x,\;t\;+\;{\theta})\;:\;-{\tau}\;{\leq}\;{\theta}\;{\leq}\;0\;{\in}\;C([-{\tau},\;0];\;R^n)$, and B(t) is an m-dimensional Brownian motion.

  • PDF

ON EXISTENCE OF SOLUTIONS OF DEGENERATE WAVE EQUATIONS WITH NONLINEAR DAMPING TERMS

  • Park, Jong-Yeoul;Bae, Jeong-Ja
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.465-490
    • /
    • 1998
  • In this paper, we consider the existence and asymptotic behavior of solutions of the following problem: $u_{tt}$ -(t, x) - (∥∇u(t, x)∥(equation omitted) + ∥∇v(t, x) (equation omitted)$^{\gamma}$ $\Delta$u(t, x)+$\delta$$u_{t}$ (t, x)│sup p-1/ $u_{t}$ (t, x) = $\mu$│u(t, x) $^{q-1}$u(t, x), x$\in$$\Omega$, t$\in$[0, T], $v_{tt}$ (t, x) - (∥∇uu(t, x) (equation omitted) + ∥∇v(t, x) (equation omitted)sup ${\gamma}$/ $\Delta$v(t, x)+$\delta$$v_{t}$ (t, x)│sup p-1/ $u_{t}$ (t, x) = $\mu$ u(t, x) $^{q-1}$u(t, x), x$\in$$\Omega$, t$\in$[0, T], u(0, x) = $u_{0}$ (x), $u_{t}$ (0, x) = $u_1$(x), x$\in$$\Omega$, u(0, x) = $v_{0}$ (x), $v_{t}$ (0, x) = $v_1$(x), x$\in$$\Omega$, u│∂$\Omega$=v│∂$\Omega$=0 T > 0, q > 1, p $\geq$1, $\delta$ > 0, $\mu$ $\in$ R, ${\gamma}$ $\geq$ 1 and $\Delta$ is the Laplacian in $R^{N}$.X> N/.

  • PDF

Phytosociological Studies on the Beech(Fagus multinervis Nakai) Forest and the Pine (Pinus parviflora S. et Z.) Forest of Ulreung Island, Korea (한국 울릉도의 너도밤나무(Fagus multinervis Nakai)림 및 섬잣나무(Pinus parviflora S. et Z.)림의 식물사회학적 연구)

  • 김성덕
    • Journal of Plant Biology
    • /
    • v.29 no.1
    • /
    • pp.53-65
    • /
    • 1986
  • The montane forests of Ulreung Island, Korea, were investigated by the ZM school method. By comparing the montane forests of this island with those of Korean Peninsula and of Japan, a new order, F a g e t a l i a m u l t i n e r v i s, a new alliance, F a l g i o n m u l t i n e r v i s, a new association, H e p a t i c o-F a g e t u m m u l t i n e r v i s and Rhododendron brachycarpum-Pinus parviflora community were recognized. The H e p a t i c o - F a g e t u m m u l t i n e r v i s was further subdivided into four subassociations; Subass. of Sasa kurilensis, Subass. of Rumohra standishii, Subass. of Rhododendron brachycarpum and Subass. of typicum. Each community was described in terms of floristic, structural and environmental features.

  • PDF

EXISTENCE OF SOLUTIONS FOR FRACTIONAL p&q-KIRCHHOFF SYSTEM IN UNBOUNDED DOMAIN

  • Bao, Jinfeng;Chen, Caisheng
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1441-1462
    • /
    • 2018
  • In this paper, we investigate the fractional p&q-Kirchhoff type system $$\{M_1([u]^p_{s,p})(-{\Delta})^s_pu+V_1(x){\mid}u{\mid}^{p-2}u\\{\hfill{10}}={\ell}k^{-1}F_u(x,\;u,\;v)+{\lambda}{\alpha}(x){\mid}u{\mid}^{m-2}u,\;x{\in}{\Omega}\\M_2([u]^q_{s,q})(-{\Delta})^s_qv+V_2(x){\mid}v{\mid}^{q-2}v\\{\hfill{10}}={\ell}k^{-1}F_v(x,u,v)+{\mu}{\alpha}(x){\mid}v{\mid}^{m-2}v,\;x{\in}{\Omega},\\u=v=0,\;x{\in}{\partial}{\Omega},$$ where ${\Omega}{\subset}{\mathbb{R}}^N$ is an unbounded domain with smooth boundary ${\partial}{\Omega}$, and $0<s<1<p{\leq}q$ and sq < N, ${\lambda},{\mu}>0$, $1<m{\leq}k<p^*_s$, ${\ell}{\in}R$, while $[u]^t_{s,t}$ denotes the Gagliardo semi-norm given in (1.2) below. $V_1(x)$, $V_2(x)$, $a(x):{\mathbb{R}}^N{\rightarrow}(0,\;{\infty})$ are three positive weights, $M_1$, $M_2$ are continuous and positive functions in ${\mathbb{R}}^+$. Using variational methods, we prove existence of infinitely many high-energy solutions for the above system.

ON THE SUPERSTABILITY OF SOME FUNCTIONAL INEQUALITIES WITH THE UNBOUNDED CAUCHY DIFFERENCE (x+y)-f(x)f(y)

  • Jung, Soon-Mo
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.2
    • /
    • pp.287-291
    • /
    • 1997
  • Assume $H_i : R_+ \times R_+ \to R_+ (i = 1, 2)$ are monotonically increasing (in both variables), homogeneous mapping for which $H_1(tu, tv) = t^p(H_1(u, v) (p > 0)$ and $H_2(u, v)^{t^q} (q \leq 1)$ hold for $t, u, v \geq 0$. Using an idea from the paper of Baker, Lawrence and Zorzitto [2], the superstability problems of the functional inequalities $\Vert f(x+y) - f(x)f(y) \Vert \leq H_i (\Vert x \Vert, \Vert y \Vert)$ shall be investigated.

  • PDF

ASYMPTOTIC BEHAVIOR OF SINGULAR SOLUTIONS OF SEMILINEAR PARABOLIC EQUATIONS

  • BAN, HYUN JU;KWAK, MINKYU
    • Honam Mathematical Journal
    • /
    • v.17 no.1
    • /
    • pp.107-118
    • /
    • 1995
  • We study the asymptotic behavior of nonnegative singular solutions of semilinear parabolic equations of the type $$u_t={\Delta}u-(u^q)_y-u^p$$ defined in the whole space $x=(x,y){\in}R^{N-1}{\times}R$ for t>0, with initial data a Dirac mass, ${\delta}(x)$. The exponents q, p satisfy $$1 where $q^*=max\{q,(N+1)/N\}$.

  • PDF

UPPERS TO ZERO IN POLYNOMIAL RINGS OVER GRADED DOMAINS AND UMt-DOMAINS

  • Hamdi, Haleh;Sahandi, Parviz
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.187-204
    • /
    • 2018
  • Let $R={\bigoplus}_{{\alpha}{\in}{\Gamma}}\;R_{\alpha}$ be a graded integral domain, H be the set of nonzero homogeneous elements of R, and ${\star}$ be a semistar operation on R. The purpose of this paper is to study the properties of $quasi-Pr{\ddot{u}}fer$ and UMt-domains of graded integral domains. For this reason we study the graded analogue of ${\star}-quasi-Pr{\ddot{u}}fer$ domains called $gr-{\star}-quasi-Pr{\ddot{u}}fer$ domains. We study several ring-theoretic properties of $gr-{\star}-quasi-Pr{\ddot{u}}fer$ domains. As an application we give new characterizations of UMt-domains. In particular it is shown that R is a $gr-t-quasi-Pr{\ddot{u}}fer$ domain if and only if R is a UMt-domain if and only if RP is a $quasi-Pr{\ddot{u}}fer$ domain for each homogeneous maximal t-ideal P of R. We also show that R is a UMt-domain if and only if H is a t-splitting set in R[X] if and only if each prime t-ideal Q in R[X] such that $Q{\cap}H ={\emptyset}$ is a maximal t-ideal.

Implementation of Agricultural Multi-UAV System with Distributed Swarm Control Algorithm into a Simulator (분산군집제어 알고리즘 기반 농업용 멀티 UAV 시스템의 시뮬레이터 구현)

  • Ju, Chanyoung;Park, Sungjun;Son, Hyoung Il
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.37-38
    • /
    • 2017
  • 최근 방제 및 예찰과 같은 농작업에 단일 UAV(Unmanned Aerial Vehicle)시스템이 적용되고 있지만, 가반하중과 체공시간 등 기존시스템의 문제가 점차 대두되면서 작업 시간을 보다 단축시키고 작업 효율을 극대화 할 수 있는 농업용 멀티 UAV시스템의 필요성이 증대되고 있다. 본 논문에서는 작업자가 다수의 농업용 UAV를 효과적으로 제어할 수 있는 분산군집제어 알고리즘을 제안하며 알고리즘 검증 및 평가를 위한 시뮬레이터를 소개한다. 분산군집제어는 UAV 제어 계층, VP(Virtual Point) 제어 계층, 원격제어 계층으로 이루어진 3계층 제어구조를 가진다. UAV 제어 계층에서 각 UAV는 point mass로 모델링 되는 VP의 이상적인 경로를 추종하도록 제어한다. VP 제어 계층에서 각 VP는 입력 $p_i(t)=u^c_i+u^o_i+u^{co}_i+u^h_i$-(1)을 받아 제어되는데 여기서, $u^c_i{\in}{\mathbb{R}}^3$는 VP 사이의 충돌방지제어, $u^o_i{\in}{\mathbb{R}}^3$는 장애물과의 충돌방지제어, $u^{co}_i{\in}{\mathbb{R}}^3$는 UAV 상호간의 협조제어, $u^h_i{\in}{\mathbb{R}}^3$는 작업자로부터의 원격제어명령이다. (1)의 제어입력에서 충돌방지제어는 각 $u^i_c:=-{\sum\limits_{j{\in}{\eta}_i}}{\frac {{\partial}{\phi}_{ij}^c({\parallel}p_i-p_j{\parallel})^T}{{\partial}p_i}}$-(2), $u^o_c:=-{\sum\limits_{r{\in}O_i}}{\frac {{\partial}{\phi}_{ir}^o({\parallel}p_i-p^o_r{\parallel})^T}{{\partial}p_i}}$-(3)로 정의되면 ${\phi}^c_{ij}$${\phi}^o_{ir}$는 포텐셜 함수를 나타낸다. 원격제어 계층에서 작업자는 햅틱 인터페이스를 통해 VP의 속도를 제어하게 된다. 이때 스케일변수 ${\lambda}$에 대하여 VP의 원격제어명령은 $u^t_i(t)={\lambda}q(t)$로 정의한다. UAV 시뮬레이터는 리눅스 환경에서 ROS(Robot Operating Systems)를 기반한 3차원 시뮬레이터인 Gazebo상에 구축하였으며, 마스터와 슬레이브 간의 제어 명령은 TCPROS를 통해 서로 주고받는다. UAV는 PX4 기반의 3DR Solo 모델을 사용하였으며 MAVROS를 통해 MAVLink 통신 프로토콜에 접속하여 UAV의 고도, 속도 및 가속도 등의 상태정보를 받을 수 있다. 현재 멀티 드론 시스템을 Gazebo 환경에 구축하였으며, 추후 시뮬레이터 상에 분산군집제어 알고리즘을 구현하여 검증 및 평가를 진행하고자 한다.

  • PDF