${H^1}({\Omega})$-NORM ERROR ANALYSIS UNDER NUMERICAL QUADRATURE RULES BY THE P-VERSION OF THE FINITE ELEMENT METHOD

  • Published : 1994.04.01

Abstract

Let $\Omega$ be a closed and bounded polygonal domain in R$^2$, or a closed line segment in R$^1$ with boundary $\Gamma$, such that there exists an invertible mapping T : $\Omega$ \longrightarrow $\Omega$ with the following correspondence: x$\in$$\Omega$ ↔ x = T(x) $\in$$\Omega$, (1.1) and (1.2) t $\in$ U$\sub$p/($\Omega$) ↔ t = to T$\^$-1/ $\in$ U$\sub$p/($\Omega$), where $\Omega$ denotes the corresponding reference elements I = [-1,1] and I ${\times}$ I in R$^1$ and R$^2$ respectively, (1.3) U$\sub$p/($\Omega$) = {t : t is a polynomial of degree $\leq$ p in each variable on $\Omega$}, and (1.4) U$\sub$p/($\Omega$) = {t : t = to T $\in$ U$\sub$p/($\Omega$)}.(omitted)

Keywords