• Title/Summary/Keyword: T-X{Y}

Search Result 5,452, Processing Time 0.027 seconds

ON EXISTENCE OF SOLUTIONS OF DEGENERATE WAVE EQUATIONS WITH NONLINEAR DAMPING TERMS

  • Park, Jong-Yeoul;Bae, Jeong-Ja
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.465-490
    • /
    • 1998
  • In this paper, we consider the existence and asymptotic behavior of solutions of the following problem: $u_{tt}$ -(t, x) - (∥∇u(t, x)∥(equation omitted) + ∥∇v(t, x) (equation omitted)$^{\gamma}$ $\Delta$u(t, x)+$\delta$$u_{t}$ (t, x)│sup p-1/ $u_{t}$ (t, x) = $\mu$│u(t, x) $^{q-1}$u(t, x), x$\in$$\Omega$, t$\in$[0, T], $v_{tt}$ (t, x) - (∥∇uu(t, x) (equation omitted) + ∥∇v(t, x) (equation omitted)sup ${\gamma}$/ $\Delta$v(t, x)+$\delta$$v_{t}$ (t, x)│sup p-1/ $u_{t}$ (t, x) = $\mu$ u(t, x) $^{q-1}$u(t, x), x$\in$$\Omega$, t$\in$[0, T], u(0, x) = $u_{0}$ (x), $u_{t}$ (0, x) = $u_1$(x), x$\in$$\Omega$, u(0, x) = $v_{0}$ (x), $v_{t}$ (0, x) = $v_1$(x), x$\in$$\Omega$, u│∂$\Omega$=v│∂$\Omega$=0 T > 0, q > 1, p $\geq$1, $\delta$ > 0, $\mu$ $\in$ R, ${\gamma}$ $\geq$ 1 and $\Delta$ is the Laplacian in $R^{N}$.X> N/.

  • PDF

Conditional Integral Transforms on a Function Space

  • Cho, Dong Hyun
    • Kyungpook Mathematical Journal
    • /
    • v.52 no.4
    • /
    • pp.413-431
    • /
    • 2012
  • Let $C^r[0,t]$ be the function space of the vector-valued continuous paths $x:[0,t]{\rightarrow}\mathbb{R}^r$ and define $X_t:C^r[0,t]{\rightarrow}\mathbb{R}^{(n+1)r}$ and $Y_t:C^r[0,t]{\rightarrow}\mathbb{R}^{nr}$ by $X_t(x)=(x(t_0),\;x(t_1),\;{\cdots},\;x(t_{n-1}),\;x(t_n))$ and $Y_t(x)=(x(t_0),\;x(t_1),\;{\cdots},\;x(t_{n-1}))$, respectively, where $0=t_0$ < $t_1$ < ${\cdots}$ < $t_n=t$. In the present paper, using two simple formulas for the conditional expectations over $C^r[0,t]$ with the conditioning functions $X_t$ and $Y_t$, we establish evaluation formulas for the analogue of the conditional analytic Fourier-Feynman transform for the function of the form $${\exp}\{{\int_o}^t{\theta}(s,\;x(s))\;d{\eta}(s)\}{\psi}(x(t)),\;x{\in}C^r[0,t]$$ where ${\eta}$ is a complex Borel measure on [0, t] and both ${\theta}(s,{\cdot})$ and ${\psi}$ are the Fourier-Stieltjes transforms of the complex Borel measures on $\mathbb{R}^r$.

EVALUATION FORMULAS FOR AN ANALOGUE OF CONDITIONAL ANALYTIC FEYNMAN INTEGRALS OVER A FUNCTION SPACE

  • Cho, Dong-Hyun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.3
    • /
    • pp.655-672
    • /
    • 2011
  • Let $C^r$[0,t] be the function space of the vector-valued continuous paths x : [0,t] ${\rightarrow}$ $R^r$ and define $X_t$ : $C^r$[0,t] ${\rightarrow}$ $R^{(n+1)r}$ and $Y_t$ : $C^r$[0,t] ${\rightarrow}$ $R^{nr}$ by $X_t(x)$ = (x($t_0$), x($t_1$), ..., x($t_{n-1}$), x($t_n$)) and $Y_t$(x) = (x($t_0$), x($t_1$), ..., x($t_{n-1}$)), respectively, where 0 = $t_0$ < $t_1$ < ... < $t_n$ = t. In the present paper, with the conditioning functions $X_t$ and $Y_t$, we introduce two simple formulas for the conditional expectations over $C^r$[0,t], an analogue of the r-dimensional Wiener space. We establish evaluation formulas for the analogues of the analytic Wiener and Feynman integrals for the function $G(x)=\exp{{\int}_0^t{\theta}(s,x(s))d{\eta}(s)}{\psi}(x(t))$, where ${\theta}(s,{\cdot})$ and are the Fourier-Stieltjes transforms of the complex Borel measures on ${\mathbb{R}}^r$. Using the simple formulas, we evaluate the analogues of the conditional analytic Wiener and Feynman integrals of the functional G.

An existence of solutions for an infinte diffusion constant

  • Ham, Yoon-Mee
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.631-638
    • /
    • 1996
  • The parabolic free boundary problem with Puschino dynamics is given by (see in [3]) $$ (1) { \upsilon_t = D\upsilon_{xx} - (c_1 + b)\upsilon + c_1 H(x - s(t)) for (x,t) \in \Omega^- \cup \Omega^+, { \upsilon_x(0,t) = 0 = \upsilon_x(1,t) for t > 0, { \upsilon(x,0) = \upsilon_0(x) for 0 \leq x \leq 1, { \tau\frac{dt}{ds} = C)\upsilon(s(t),t)) for t > 0, { s(0) = s_0, 0 < s_0 < 1, $$ where $\upsilon(x,t)$ and $\upsilon_x(x,t)$ are assumed continuous in $\Omega = (0,1) \times (0, \infty)$.

  • PDF

BOUNDARY-VALUED CONDITIONAL YEH-WIENER INTEGRALS AND A KAC-FEYNMAN WIENER INTEGRAL EQUATION

  • Park, Chull;David Skoug
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.763-775
    • /
    • 1996
  • For $Q = [0,S] \times [0,T]$ let C(Q) denote Yeh-Wiener space, i.e., the space of all real-valued continuous functions x(s,t) on Q such that x(0,t) = x(s,0) = 0 for every (s,t) in Q. Yeh [10] defined a Gaussian measure $m_y$ on C(Q) (later modified in [13]) such that as a stochastic process ${x(s,t), (s,t) \epsilon Q}$ has mean $E[x(s,t)] = \smallint_{C(Q)} x(s,t)m_y(dx) = 0$ and covariance $E[x(s,t)x(u,\upsilon)] = min{s,u} min{t,\upsilon}$. Let $C_\omega \equiv C[0,T]$ denote the standard Wiener space on [0,T] with Wiener measure $m_\omega$. Yeh [12] introduced the concept of the conditional Wiener integral of F given X, E(F$\mid$X), and for case X(x) = x(T) obtained some very useful results including a Kac-Feynman integral equation.

  • PDF

EXISTENCE OF NONNEGATIVE SOLUTIONS FOR BOUNDARY VALUE PROBLEMS

  • Kim, RakJoong
    • Korean Journal of Mathematics
    • /
    • v.17 no.4
    • /
    • pp.495-505
    • /
    • 2009
  • By means of Green function and fixed point theorem related with cone theoretic method we show that there exist multiple nonnegative solutions of a Dirichlet problem $$\array{-[p(t)x^{\prime}(t)]^{\prime}={\lambda}q(t)f(x(t)),\;t{\in}I=[0,\;T]\\x(0)=0=x(T)}$$, and a mixed problem $$\array{-[p(t)x^{\prime}(t)]^{\prime}={\mu}q(t)f(x(t)),\;t{\in}I=[0,\;T]\\x^{\prime}(0)=0=x(T)}$$, where ${\lambda}$ and ${\mu}$ are positive parameters.

  • PDF

Central Limit Theorem for Levy Processes

  • Wee, In-Suk
    • Journal of the Korean Statistical Society
    • /
    • v.12 no.2
    • /
    • pp.100-109
    • /
    • 1983
  • Let ${X_i}$ be a process with stationary and independent increments whose log characteristic function is expressed as $ibut-2^{-1}\sigma^2u^2t+t\int_{{0 }^c}{(exp(iux)-1-iux(i+x^2)^{-1})dv(x)}$. Our main result is taht $x^2(\int_{\y\>x}{dv(y)})/(\int_{$\mid$y$\mid$\leqx}{y^2dv(y)+\sigma^2}) \to 1$ as $x \to 0 (resp. x \to \infty)$ is necessary, and sufficient for ${X-i}$ to have ${A_t}$ and ${B_t}$ such that $(X_t-A_t)/B_t \to^D n(0,1)$ as $t \to 0 (resp. t \to \infty)$.

  • PDF

THE ZEROS OF SOLUTIONS OF SOME DIFFERENTIAL INEQUALITIES

  • Kim, RakJoong
    • Korean Journal of Mathematics
    • /
    • v.11 no.2
    • /
    • pp.117-125
    • /
    • 2003
  • Let $x(t)$ satisty $$(p(t)x^{\prime}(t))^{\prime}+q(t)x^{{\alpha}}(t)+r(t)x^{{\beta}-1}x^{\prime}(t){\leq}0({\geq}0)$$. Then the zeros of $x(t)$ or $x^{\prime}(t)$ are simple.

  • PDF

POSITIVE SOLUTION FOR SYSTEMS OF NONLINEAR SINGULAR BOUNDARY VALUE PROBLEMS ON TIME SCALES

  • Miao, Chunmei;Ji, Dehong;Zhao, Junfang;Ge, Weigao;Zhang, Jiani
    • The Pure and Applied Mathematics
    • /
    • v.16 no.4
    • /
    • pp.327-344
    • /
    • 2009
  • In this paper, we deal with the following system of nonlinear singular boundary value problems(BVPs) on time scale $\mathbb{T}$ $$\{{{{{{x^{\bigtriangleup\bigtriangleup}(t)+f(t,\;y(t))=0,\;t{\in}(a,\;b)_{\mathbb{T}},}\atop{y^{\bigtriangleup\bigtriangleup}(t)+g(t,\;x(t))=0,\;t{\in}(a,\;b)_{\mathbb{T}},}}\atop{\alpha_1x(a)-\beta_1x^{\bigtriangleup}(a)=\gamma_1x(\sigma(b))+\delta_1x^{\bigtriangleup}(\sigma(b))=0,}}\atop{\alpha_2y(a)-\beta_2y^{\bigtriangleup}(a)=\gamma_2y(\sigma(b))+\delta_2y^{\bigtriangleup}(\sigma(b))=0,}}$$ where $\alpha_i$, $\beta_i$, $\gamma_i\;{\geq}\;0$ and $\rho_i=\alpha_i\gamma_i(\sigma(b)-a)+\alpha_i\delta_i+\gamma_i\beta_i$ > 0(i = 1, 2), f(t, y) may be singular at t = a, y = 0, and g(t, x) may be singular at t = a. The arguments are based upon a fixed-point theorem for mappings that are decreasing with respect to a cone. We also obtain the analogous existence results for the related nonlinear systems $x^{\bigtriangledown\bigtriangledown}(t)$ + f(t, y(t)) = 0, $y^{\bigtriangledown\bigtriangledown}(t)$ + g(t, x(t)) = 0, $x^{\bigtriangleup\bigtriangledown}(t)$ + f(t, y(t)) = 0, $y^{\bigtriangleup\bigtriangledown}(t)$ + g(t, x(t)) = 0, and $x^{\bigtriangledown\bigtriangleup}(t)$ + f(t, y(t)) = 0, $y^{\bigtriangledown\bigtriangleup}(t)$ + g(t, x(t)) = 0 satisfying similar boundary conditions.

  • PDF

STABILITY FOR INTEGRO-DELAY-DIFFERENTIAL EQUATIONS

  • Goo, Yoon-Hoe;Ryu, Hyun Sook
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.13 no.1
    • /
    • pp.45-51
    • /
    • 2000
  • We will investigate some properties of integro-delay-differential equations, $$x^{\prime}(t)=A(t)x(t-g_1(t,x_t))+{\int}_{t_0}^{t}B(t,s)x(s-g_2(s,x_s))ds,\;t_0{\geq}0,\\x(t_0)={\phi}$$,

  • PDF