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BOUNDARY-VALUED CONDITIONAL
YEH-WIENER INTEGRALS
AND A KAC-FEYNMAN
WIENER INTEGRAL EQUATION

CHULL PARK AND DAVID SKOUG

1. Introduction

For Q = [0,5] x [0,T] let C'(Q) denote Yeh-Wiener space, i.e., the
space of all real-valued continuous functions z(s,t) on @ such that
r(0,t) = 2(s,0) = 0 for every (s,t) in ). Yeh [10] defined a Gaussian
measure m, on C(Q) (later modified in [13]) such that as a stochastic
process {z(s,t),(s,t) € @} has mean E[z(s,t)] = fC(Q) (s, t)my(dr) =
0 and covariance E[z(s,t)z(u.v)] = min{s,u} min{t,v}. Let C, =
C[0,T] denote the standard Wiener space on |0,7] with Wiener mea-
sure m,,. Yeh [12] introduced the concept of the conditional Wiener
integral of F' given X, E(F|X). and for the case X(z) = z(T') obtained
some very useful results including a Kac-Feynman integral equation.

A very important class of functions in quartum mechanics consists
of functions on C[0,T] of the type

T
G(z) = exp {/; H(S,I(s))ds}

where 6 : [0,T] x R — C.
Yeh [12] shows that under suitable regularity conditions on 6, the
conditional Wiener integral

(1.1)
H(t,£) = (2nt)" 7 exp {—g} E <exp {/(;te(s,x(s))ds} |z(t) = g)
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satisfies the Kac-Feynman integral equation

-

2 t
(1.2) H(t,6) = <2wt>—%exp{—§27} +/ 2n(t—s))
g 0

2
/9(8-,77)H(8,77)H(8~77)exp{—g] ) }dnds
E ) ‘(f e S)

whose solution can be expressed as an infinite series o terms involving
Lebesgue integrals. Then using (1.1). one can use the series solution
of (1.2) to evaluate the conditional Wiener integral

E (exp {(/:9(5,1(8)}(1.3} 2(t) = g.)

The corresponding problem in Yeh -Wiener space; namely to evalu-
ate

t 3
(1.3) E (exp {/ / o(u, v, r(u, U))dudv} lr(s,t) = f)
o Jo

turned out to be substantially different than the corresponding one-
parameter problem. After many attempts to solve this problem by
several mathematicians, the first really successful solution was given
by Park and Skoug [8] by introducing a sample path-valued conditional
Yeh-Wiener integral of the type

14) E (p {// a<u.,v.,x<u.v>>dudv} ja(s.) = n(-))

which satisfies a Wiener integral equation similar to shat of Cameron
and Storvick [1]. The Wiener integral equation is then solved to eval-
uate (1.4), and finally (1.3) is obtained by integrating (1.4) appropri-
ately.

In this paper we consider boundary-valued conditional Yeh-Wiener
integrals of the type
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where F € L1(C(Q), my). Since 2(0,%) = z(+,0) = 0 for every zeC(Q),
the value of z on 0Q), the boundary of Q, is completely determined by
the value of z on the two edges of Q, namely by z(-,T) and (S, *).

In section 2 we show that the conditional expectation (1.5) is very
closely related to the Yeh-Brownian bridge process

(1.6) {z € C(Q)]z(s,t) = 0 for all (s.t) edQ}.

We also discuss other kinds of two-parameter Brownian bridges in sec-
tion 2.

In section 4, we evaluate (1.5) for functionals F of the form
F(z) = exp{fQ #(u, v, z(u,v)dudv} by solving a Kac-Feynman Wiener
integral equation. Finally, in section 5, a conditional version of the
Cameron-Martin translation theorem is obtained for conditional Yeh-
Wiener integrals of the type (1.5).

2. Yeh-Brownian Bridges

As is well known, the one-parameter Brownian bridge can be ex-
pressed in the form

(2.1) {w(*) e Culw(T) =0} = {w() - ?uv(T),w e Cyu}.

Another convenient representation for the Brownian bridge is given by

y(t):{tw(}—%) , 0<t<T
0 , t=0

whose covariance is
. vt
2.2 Bl = (ene) (1- 55

There doesn’t seem to be a consensus for the two-parameter version
of Brownian bridges. So, we will introduce several version, and then
develop further theory for one of these versions.
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The first version is given in the form
()(%)

23) (= e C@Ia(5.7) = 0} = {at-n) -

Note that under the conditioning z(S5,7T) = 0,

o(S.T),z ¢ C(Q)} .

st
ST”
and the process z(s,t) — 25z(S,T) 1s independent of z(S,T) for all
(s,1) € Q

Other versions of two-parameter Brownian bridges are
(24)  {z € CQ)a(-T) = 0} = {ai-,x) = za(- Thr € C(Q)}
and
(25)  {r e CQa(S,%) = 0} = {a-,x) = za(S.+ .z € C(Q)}

The final version, which we will call the Yeh-Brownian bridge process,

r(s,t) — (5, T) = z(s,1),

is given by
(2.6) {zeC(Q)|x(S,+)=0,z(-,T) =0}

= {:c(.’*) — ;:1:(5,*) - —;—;:r(-,T)., +(.;(;)x(S,T),r € C'(Q)} .

S
Note that the process
; t t
(2.7) z(s,t) = x(s,t) — %x(s,t; — -fx(s,T) + ?;TI(S’T)

satisfies the condition z(S,*) = 0 and z(-,T) = 0. Furthermore, z is
independent of z(S, *) and z(-,T), and the covariance of z is given by

sV tvt
(2.8) E[z(s,t)z(s',t)] =(sA ) (1 2 \;b ) (tAth (1 - —T-> :
For 0 < s < Slet Q, = [0,s] x [0.T], and for z ¢ C(Q,) we define

T+,s by

u LW uv
(2.9) Ty o(u,v) = ;z(s,v)+-j;.r(u,T)~— ;—T:r(s,T).

For convenience, if s = S, we surpress the S and simply write

2V +(8,T)

, u v
(2.10)  z(u,v)=x45(u,v) = Zz(5,v) + —-f;r(u,T; - ST

S
for (u,v) in Q. We note that z =z - ..
Our first result may be stated as follows:
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THEOREM 1. If {z(s,t),(s,t) € Q} is the standard Yeh- Wiener pro-
cess, then z —z., and z., are independent Gaussian processes on ), and
so are z — Z~ 4 and ., on Q,. Furthermore, z — z, is independent
of (-, T') and z(S,*) on Q, and « — ., is independent of z(-,T) and
z(s,*) on Q.

Proof. Using the formula

E[z(s,t)z(u,v)] = (s Au)(t Av)
1t 1s easy to establish that
E[{z(s,t) — z,(s,t)}z(u,v)] = 0.

Since uncorrelated Gaussian processes are independent, we may con-
clude that # — r., and z., are independent processes on Q. The rest of
the proof can be established in a similar manner.

3. Boundary-Valued Conditional Yeh-Wiener Integrals
For z € C(Q), define X(z) and X,(z) by

(3.1) X(z) = Xs(z) = (2(-,T),2(S,*)), and

(3.2) Xo(z) = (z(-,T), z(s,%)).

Thus if n € C(Q), then X (z) = X(n) means that z and 7 agree on Q.
Similarly, X,(z) = X(n) means that z and n agree on 8Q,.
The following theorem plays a key role throughout this paper.

THEOREM 2. Let F € L1(C(Q)). Then for each n € C(Q),
(3.3) E(F(z)|X(z) = X(n)) = E[F(z - 24+ n4)]-
If F e Li(C(Q,)), then for each n € C(Q,),

(34)  E(F()|Xu(x) = Xu(n)) = E[F(z = 24,0 +10)]
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Proof. Under the conditioning X(.r) = X(n), we have z, = 1, on
@, and hence ¢ = ¢ — z + 1. Therefore

F(z)|X(z) = X(n)) = E(F(z = 2, 4 n,)|X () = X(n)).

Thus (3.3) follows from the fact that the process z — 2 . is independent
of each component of X(z) by Theorem 1. Equation {3.4) follows in a
similar manner. =

The following case is singled out as it correspoads to the Yeh-
Brownian bridge.

COROLLARY. Let F e Li(C(Q)). Then
(3.5) E(F(2)|X(2) = (0.0)) = E[F(z — z,)|;
that is to say,
(3.5) E(F(z)|z(s,t) =0 on 8Q)

= E[F(a(-,* )—Ex(S *l——-— (-, T)+£.;_(T— (S.7))).

The following example illustrates Theorem 2 and its Corollary.

EXAMPLE. For z € C(Q), let F(z) = z?(S5/2,T/2). Then by use of
equations (3.3) and (3.5), the fact that E{z(s,t)] = 0, and E[z(s, t)2(u,
v)] = min{s,u} min{t, v}, it follows that

E [22(S/2,T/2)] = ST/4,
E (% (5/2.T/2)) |X(z) = X ()
= E{(#(S/2.T/2) ~ 2, (8,2, T/2) + n,(S/2,T/2)*}
= ST/16 + 12 (5/2.T/2).

and

E(z*(S/2,T/2)|z(s,t) =0 on 0Q) = ST/16.

In section 5, we need to consider stochastic integrals of h € Ly(Q)
with respect to ., defined by (2.10). Such stochastic integrals may be
expressed in terms of the functions h;, hoandhs defined below.
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DEFINITION. For each function h € Ly(Q). define hy, hy and k3 on
Q by

| 7S
hi(s,t) = --;/ h(u,t)du,
S Jo
; -
(3.6) ho(s,t) = ’Z_’/ h(s,v)dv, and
0
hi(s,t) = TS—,}T/Qh(u,v)dudv.

The following theorem gives some useful and interesting formulas
involving the h; and z.. The proof is rather straightforward and hence
omitted. Some similar observations were made by Park and Skoug [7,

p.456].
THEOREM 3. Let h € L2(Q). Then for j =1,2,3,

(3.7) /hh -/ K2,

(3.8) Ik — k|3 = |[R]I3 = |IR;ll3 > 0, and
(3.9) [h1 4+ ha — hal5 = |Ra |3 + [[R2ll — |hsll3.

Furthermore, for every = ¢ C(Q),

(3.10) /h]-d:cvz/ hider for j=1,2,3, and
Q Q

(3.11) [ raes = [ (b b= o
Q Q

4. Evaluation of E (exp {fQ qS(s,t,a:(s,t))dsdt} | X (x) = X(n))

Let ¢(s,t,u) be a bounded continuous function on @ x R, and let

T
(4.1) 6(s, z(s,+)) :/; P(s,t,z(s.t))dt.
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Then

3 T
F(s,z) = exp {/0 / Q(u,t,m(u,t))dta‘u}
0
= exp {/ﬂ-" B(u,;r(u,-))du} .

Since OF(s,x)/0s = 0(s,z(s,-))F(s,z), by integrating over [0, s],0 <
8 > 8, we obtain

F(s,z)—-1= /089(0,.17(0, ) F(o,z)do.

Next take the conditional expectation of both sides above and then use
the Fubini theorem to obtain

(42) E(F(s,2)|Xs(z) = X,(n))

14 /0 " E(8(0, 2(0. ) F(0,2)|Xu(z) = X.(n))do.

But by Theorem 2, for 0 <o <s< §.
(4.3)
E(8(0.x(0,))F(o,2)|Xs(2) = Xs(7))

=E[f(0.(z - Ty + 777,3)(‘7» NF(o,z — 245+ ’77.3)]

=F 9(0',(1' — Ty + 777,8)(07 ))

exp {/0, 6(u, (2 — 2y + 110.5) (1w, -))du} ] .

Note that for 0 < u <o <5< 8§ and fixed ¢ and s,

(44) (T]“r,ﬂ)‘hc’(u?') = 777,3(“")
(4.5)

(2 = 23.0)() = (2= 2yo) () + =z = 252)(0, ).
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Easy, but lengthy computations show that (» — 2, ,)(u,-) and (z —
T+,)(0, ) are independent processes, and (r -- z.,,)(,-) is equivalent
to y/o(1 — £)y(-) for fixed ¢ and s, where y(-} is the Brownian bridge
on [0, T}, namely,

t
(4.6) y{t) = w(t) - Lu(D).

Since y(T) = 0, it follows that

4D e Du0 = - D]

Hence, using (4.4) through (4.7) and the above comments in (4.3), we
obtain

(4.8)
E[G(U,Z(U, '))F(U7I)IX8(‘E) = XS'”)]

:E‘[G(U, (T —2y,s +1v,5)(0,"))

oxp{ [ 8l (2 = 20,00 ) 2 = 2,0)(0,) 4 71,0 )] )]

=By [0, [o (1= 2) y() +17,e(0,)

Belexpl [ (2 = 0,000+ 241 = Z) 00+ ()
=Ey [#(0,1/o(1 = 2) y() + my.u(0,)

- Er [exp{/ﬂa 6(u, (z — z,0)(u, ) + [”*(1 — -E) y() 1y (%, )]y 0 (b, ))du}]]
=8y [0, [/o(1 = 2) y() + 11.e(0,)

- Bafexp{ [ 8lu,a(u, )dubiXe (2) = Xalyf#(1 = 3) y() + ma.sle, )]
If we set
(49) G(s.n) = E(F(s,2)|X.(z) = X.(n)
then it follows from (4.2) and (4.8) that

@10) Gls.m) =1+ [ Byfoto[o(1-2) ) + (o)

Glo, (1M1= 2) 4() + 1,0 (5, D



772 Chull Park and David Skoug

Since y(t) = w(t) — %w(T), we may express (4.10) in terms of the
Brownian motion w(-) and obtain

(4.11)

G(s,n) =1+ A E,[6(o/o(1 - %) [w(-) — —fw(T)] Fnys(0.-))

*

(Gl (yf#(1 = =) [w() = w(T)] + 7005 ) ]do

This Wiener integral equation is very similar to the Cameron-Storvick
integral equation [1, equation (4.3)] and the Park-Skoug integral equa-
tion [8, equation (4.5)]. Thus the Wiener integral equation (4.11) has
a series solution

o0
(4.12) G(s,n) =Y _ Hils.m),

k=0

where the sequence {H}} is given inductively by

Ho(s,n) = 1,
and
Hyys(s,m) = / Eulb(o, o1~ % () ~ (T + 0-ul0,0))
0 y
: Hk(av *(1 - ;)['U() - Tw(T)] -+ T"y,s(*v ))]da

Using the same method used by Park and Skoug [8, scction 4], one can
show that the series in (4.12) converges uniformly on [0,S], and that it
is the only bounded continuous solution of (4.11).

5. Translation of Boundary-Valued conditional Yeh-Wiener
integrals

The Cameron-Martin translation theorem for Yeh-Wiener integrals,
see Yeh [11], states that if z¢(s,t) = f(,’ foa h(u,v)dudv on Q for h e Ly(Q),
and if T} is the transformation of C(£2) into itself de‘ined by

z=T{(x)=x+xg
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for x € C(Q), then for any Yeh-Wiener integrable function F on C(Q),
(5.1) E[F(2)] = E[F(z + z0)J(z¢, z)],

where
J(zo.x):exp{w—;—/th(u,v)dudv}exp{—/Qh(u,v)dz(u,v)}.

The following is the boundary-valued conditional version of (5.1).

THEOREM 4. Let zo(s,t) = fot Js h(u,v)dudv on Q for some h € L5(Q),
and let F e L(C(Q),my). Then, for each € C(Q),

B(F(2)|X(2) =X(n)) = E(F(z + 20)J (20, )X (= + o)
1

=X ex — =|lh ho — hall2 + hdn,

myesp { = 3+ ha ol + [ )

where hy, ho, and hs are given by (3.6).
Proof. First, using Theorem 2, we see that
E(P()|X(2) = X(1)) = E[F(z - 2y + 1.
Since (x + z9)y = T4 + (z0)y, we may apply (5.1) to get
(5.2) E[F(z — zy +14)] = E[F(z + 2o — 24 — (20)y + 17) (20, 7)].

Next, we write J(xg,z) in the form

(53) T 2) = exp(~ gl expl [ he =y, (zo))

. exp{- /Q hds,} exp /Q hd,} exp{— /Q hd(z0)s).

Since & — z., and z are independent processes on @ by Theorem 1, it
follows from (5.2), (5.3) and (3.11) that
(5.4)

; 1
E[F(z — 24 4+ )] = expl- Al + /Q iy - /Q hd(z0)-}
E[F(z + 20— x4 — (To)y +74)

eXP{—/th(x—$7+777”(10)7)}]

- Elexp{ ~‘/(;hd:c7}].
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As fQ hdz., = fQ(hl + hy — h3)dz by (3.11), fQ ndr. is a normal

random variable with mean zero and variance ||hy + hy — h3||3. Thus

(55)  Elexp{- /Q hdz.}] = exp{ ks + s — hsll3).

Next, using (3.11), (3.7), and the definition of z,, we see that

/ hd(x()),y = / (h] + h2 - hg)d.'l?()
Q Q
:/(hl +h2 —_ hg)h
Q
= {[hallz + [1h2llz = lIBsllz:
Using Theorem 2 again, we obtain

E(F(z + z¢)J (20, 2)|X (2 + z0) = X(n))
=E[F(z 4+ z0— 24— (20)y + 77)

(5.6) j
expl=g I - [ ey m o))

Finally, we substitute (5.5) and (5.6) into (5.4), and then use (3.9) to
obtain

1
E[F(z — 2, + 1)) = exp{~2 by + ho — ol + [ har,)
g
- E(F(x + z9)J(zo,2)| X (2 + :20) = X ().
which completes the proof of Theoremn 4. |
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