• Title/Summary/Keyword: T-S Fuzzy Logic

Search Result 70, Processing Time 0.023 seconds

The Design and application of Fuzzy control System using T-operators (T-operators를 이용한 Fuzzy Control System의 설계 및 응용)

  • Kim, Il;Lee, Sang-Bae
    • Journal of the Korean Institute of Navigation
    • /
    • v.20 no.1
    • /
    • pp.87-96
    • /
    • 1996
  • In this paper, The Fuzzy Logic Controller based on T-operators is designed. Some typical T-operators and their mathematical properties are studied. A generalized fuzzy inference model is proposed by introducing the general notion of T-operators into the conventional one which is based only on the Min and Max operators. Fuzzy Logic Control algorithms based on the T-operators are suggested. Then, by computer simulations, the effect of various T-operators on the performance of the fuzzy logic controller are studied. The purpose of these simulation studies were to observe the flexibility and system responses using the processed class of T-operators in the fuzzy inference mechanisms. This observation was made on parameters such as speed of reponses, steady-state behavior and non oscillatory responses.

  • PDF

Modeling of vision based robot formation control using fuzzy logic controller and extended Kalman filter

  • Rusdinar, Angga;Kim, Sung-Shin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.3
    • /
    • pp.238-244
    • /
    • 2012
  • A modeling of vision based robot formation control system using fuzzy logic controller and extended Kalman filter is presented in this paper. The main problems affecting formation controls using fuzzy logic controller and vision based robots are: a robot's position in a formation need to be maintained, how to develop the membership function in order to obtain the optimal fuzzy system control that has the ability to do the formation control and the noise coming from camera process changes the position of references view. In order to handle these problems, we propose a fuzzy logic controller system equipped with a dynamic output membership function that controls the speed of the robot wheels to handle the maintenance position in formation. The output membership function changes over time based on changes in input at time t-1 to t. The noises appearing in image processing change the virtual target point positions are handled by Extended Kalman filter. The virtual target positions are established in order to define the formations. The virtual target point positions can be changed at any time in accordance with the desired formation. These algorithms have been validated through simulation. The simulations confirm that the follower robots reach their target point in a short time and are able to maintain their position in the formation although the noises change the target point positions.

Logic-based Fuzzy Neural Networks based on Fuzzy Granulation

  • Kwak, Keun-Chang;Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1510-1515
    • /
    • 2005
  • This paper is concerned with a Logic-based Fuzzy Neural Networks (LFNN) with the aid of fuzzy granulation. As the underlying design tool guiding the development of the proposed LFNN, we concentrate on the context-based fuzzy clustering which builds information granules in the form of linguistic contexts as well as OR fuzzy neuron which is logic-driven processing unit realizing the composition operations of T-norm and S-norm. The design process comprises several main phases such as (a) defining context fuzzy sets in the output space, (b) completing context-based fuzzy clustering in each context, (c) aggregating OR fuzzy neuron into linguistic models, and (c) optimizing connections linking information granules and fuzzy neurons in the input and output spaces. The experimental examples are tested through two-dimensional nonlinear function. The obtained results reveal that the proposed model yields better performance in comparison with conventional linguistic model and other approaches.

  • PDF

Fuzzy Logic PID controller based on FPGA

  • Tipsuwanporn, V.;Runghimmawan, T.;Krongratana, V.;Suesut, T.;Jitnaknan, P.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1066-1070
    • /
    • 2003
  • Recently technologies have created new principle and theory but the PID control system remains its popularity as the PID controller contains simple structure, including maintenance and parameter adjustment being so simple. Thus, this paper proposes auto tune PID by fuzzy logic controller based on FPGA which to achieve real time and small size circuit board. The digital PID controller design to consist of analog to digital converter which use chip TDA8763AM/3 (10 bit high-speed low power ADC), digital to analog converter which use two chip DAC08 (8 bit digital to analog converters) and fuzzy logic tune digital PID processor embedded on chip FPGA XC2S50-5tq-144. The digital PID processor was designed by fundamental PID equation which architectures including multiplier, adder, subtracter and some other logic gate. The fuzzy logic tune digital PID was designed by look up table (LUT) method which data storage into ROM refer from trial and error process. The digital PID processor verified behavior by the application program ModelSimXE. The result of simulation when input is units step and vary controller gain ($K_p$, $K_i$ and $K_d$) are similarity with theory of PID and maximum execution time is 150 ns/action at frequency are 30 MHz. The fuzzy logic tune digital PID controller based on FPGA was verified by control model of level control system which can control level into model are correctly and rapidly. Finally, this design use small size circuit board and very faster than computer and microcontroller.

  • PDF

ON THE STRUCTURE AND LEARNING OF NEURAL-NETWORK-BASED FUZZY LOGIC CONTROL SYSTEMS

  • C.T. Lin;Lee, C.S. George
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.993-996
    • /
    • 1993
  • This paper addresses the structure and its associated learning algorithms of a feedforward multi-layered connectionist network, which has distributed learning abilities, for realizing the basic elements and functions of a traditional fuzzy logic controller. The proposed neural-network-based fuzzy logic control system (NN-FLCS) can be contrasted with the traditional fuzzy logic control system in their network structure and learning ability. An on-line supervised structure/parameter learning algorithm dynamic learning algorithm can find proper fuzzy logic rules, membership functions, and the size of output fuzzy partitions simultaneously. Next, a Reinforcement Neural-Network-Based Fuzzy Logic Control System (RNN-FLCS) is proposed which consists of two closely integrated Neural-Network-Based Fuzzy Logic Controllers (NN-FLCS) for solving various reinforcement learning problems in fuzzy logic systems. One NN-FLC functions as a fuzzy predictor and the other as a fuzzy controller. As ociated with the proposed RNN-FLCS is the reinforcement structure/parameter learning algorithm which dynamically determines the proper network size, connections, and parameters of the RNN-FLCS through an external reinforcement signal. Furthermore, learning can proceed even in the period without any external reinforcement feedback.

  • PDF

Implemented of Fuzzy PI+PD Logic circuits for DC Servo Control Using Decomposition of $\alpha$-level fuzzy set ($\alpha$-레벨 퍼지집합 분해에 의한 직류 서보제어용 퍼지 PI+PD 로직회로 구현)

  • Hong, J.P.;Won, T.H.;Jeong, J.W.;Lee, Y.S.;Lee, S.M.;Hong, S.I.
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.127-129
    • /
    • 2008
  • This paper describes a method of approximate reasoning for fuzzy control of servo system, based on decomposition of -level fuzzy sets. It is propose that logic circuits for fuzzy PI+PD are a body from fuzzy inference to defuzzificaion in cases where the output variable u directly is generated PWM. The effectiveness for robust and faster response of the fuzzy control scheme is verified for a variable parameter by comparison with a PID control and fuzzy control. A position control of DC servo system with a fuzzy logic controller successfully demonstrated.

  • PDF

A Study on the Design of Fuzzy Controller for a Turbojet Engine Model and its Performance Enhancement through Satisfactory Multiple Objectives (터보제트엔진의 퍼지제어기 설계 및 다목적함수 만족기법을 통한 제어성능 향상에 관한 연구)

  • Han,Dong-Ju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.6
    • /
    • pp.61-71
    • /
    • 2003
  • In the study of control technique for a turbojet engine model, the Takagi-Sugeno fuzzy logic controller has been designed based on the model identification by the well designed PI controlled system through T-S neuro-fuzzy inference system. To enhance this designed controller, those procedures are proposed that certainty factors are adopted to each rule of objective groups which are classified by the fuzzy C-Means algorithm and the satisfaction degrees are matched to meet the objectives. This proposed technique shows its feasibility by upgrading performances of the previously well-designed T-S fuzzy controller.

The Tuning Method on Consequence Membership Function of T-S Type FLC (T-S형 퍼지제어기의 후건부 멤버십함수 동조방법)

  • Choi, Han-Soo;Lee, Kyoung-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.3
    • /
    • pp.264-268
    • /
    • 2011
  • This paper presents a Takagi-Sugeno (T-S) type Fuzzy Logic Controller (FLC) with only 3 rules. The choice of parameters of FLC is very difficult job on design FLC. Therefore, the choice of appropriate linguistic variable is an important part of the design of fuzzy controller. However, since fuzzy controller is nonlinear, it is difficult to analyze mathematically the affection of the linguistic variable. So this choice is depend on the expert's experience and trial and error method. In this paper, we propose the method to choose the consequence linear equation's parameter of T-S type FLC. The parameters of consequence linear equations of FLC are tuned according to the system error that is the input of FLC. The full equation of T-S type FLC is presented and using this equation, the relation between output and parameters can represented. The parameters are tuned with gradient algorithm. The parameters are changed depending on output. The simulation results demonstrate the usefulness of this T-S type 3 rule fuzzy controller.