Fifth IFSA World Congress (1993), 993-996

ON THE STRUCTURE AND LEARNING OF
NEURAL-NETWORK-BASED FUZZY LOGIC CONTROL SYSTEMS

C.T Lin
Department of Computer and Information Science
National Chiao-Tung University
Hsinchu, Taiwan, R.O.C.

ABSTRACT

This paper addresses the structure and its associated leaming algo-
rithms of a feedforward multi-layered connectionist network, which has
distributed learning abilities, for realizing the basic elements and func-
tions of a traditional fuzzy logic controller. The proposed neural-
network-based fuzzy logic control system (NN-FLCS) can be contrasted
with the traditional fuzzy logic control system in their network structure
and leaming ability. An on-line supervised structure/parameter learning
algorithm is proposed for constructing the NN-FLCS dynamically. The
proposed dynamic leaming algorithm can find proper fuzzy logic rules,
membership functions, and the size of output fuzzy partitions simultane-
ously. Next, a Reinforcement Neural-Network-Based Fuzzy Logic Con-
trol System (RNN-FLCS) is proposed which consists of two closely
integrated Neural-Network-Based Fuzzy Logic Controllers (NN-FLCs)
for solving various reinforcement learning problems in fuzzy logic sys-
tems. One NN-FLC functions as a fuzzy predictor and the other as a
fuzzy controller. Associated with the proposed RNN-FLCS is the rein-
forcement structure/parameter learning algorithm which dynamically
determines the proper network size, connections, and parameters of the
RNN-FLCS through an external reinforcement signal. Furthermore,
leaming can proceed even in the period without any external reinforce-
ment feedback.

1. Neural-Network-Based Fuzzy Logic Control System

During the past decade, fuzzy logic has found fruitful applications in
various fields [1-3]. However, most control engineers are still frustrated
with this technique due to a lack of systematic procedures for the design
of fuzzy logic systems. The choice of membership functions and/or
fuzzy logic rules remains heuristic and subjective, and a trial-and-error
procedure is commonly used for the design of fuzzy logic systems.
Recent direction of exploration is to design fuzzy logic systems that have
the capability of learning from experience by itself [4,5).

Distributed representation and learning capabilities are two major
features of neural networks {6,7]. In distributed representation, a value is
represented by a pattem of activity distributed over many computing ele-
ments (CEs), and each CE is involved in representing many different
values. So each CE has a receptive field, which is the set of all values
that include all the patterns it represents. Therefore, each CE corresponds
to a fuzzy set, and its receptive field corresponds to the membership func-
tion. Among the three classes of leaming schemes, the unsupervised pro-
cedures 8] are suitable to find clusters of data indicating the presence of
fuzzy rules. The supervised procedures and the reinforcement procedures
are good to adapt the fuzzy rules or membership functions for the desired
output in fuzzy logic systems. Hence, bringing the learning abilities of
neural networks to fuzzy logic systems will provide a promising
approach.

This paper presents a general Neural-Network-Based Fuzzy Logic
Control System (NN-FLCS) for realizing the basic elements and func-
tions of a traditional fuzzy logic control and decision system (1-3]. In
this connectionist structure [9-11], the input and output nodes represent
the input states and output control/decision signals, respectively, and in
the hidden layers, there are nodes functioning as membership functions
and rules. An on-line supervised structure/parameter learming algorithm
is proposed to construct NN-FLCS dynamically. This algorithm blends
Juzzy similarity measure with supervised gradient-descent learning 10 per-
form structure and parameter learning simultaneously. The fuzzy similar-
ity measure is a tool to determine the degree to which two fuzzy sets are
equal. Using this measure, a new output membership function may be
added, and the rule-node connections (the consequence links of rule
nodes) can be changed properly. In some learning environments,

This work was supported in part by the National Science Foundation
under Grant CDR §803017 to the Engineering Research Center for
Intelligent Manufacturing Systems and a grant from the Ford Foundation.

C.S. George Lee

School of Electrical Engineering
Purdue University

West Lafayette, IN 47907, USA

obtaining exact training data may be expensive. This motivates the desire
of integrating two Neural-Network-Based Fuzzy Logic Controllers (NN-
FLCs) into a Reinforcement Neural-Network-Based Fuzzy Logic Control
System (RNN-FLCS) for solving various reinforcement learning prob-
lems. One NN-FLC functions as a fuzzy predictor and the other as a
fuzzy controller. Structurally, these two NN-FLCs share the first two
layers of the proposed NN-FLCS; that is, they use the same distributed
representation of input patterns. This representation is the overlapping
type and is dynamically adjustable through the leaming process. Associ-
ated with the proposed RNN-FLCS is the reinforcement
structure/parameter learning algorithm which dynamically determines the
proper network size, connections, and parameters of the RNN-FLCS
through an external reinforcement signal. Furthermore, leaming can
proceed even in the period without any external reinforcement feedback.
The proposed RNN-FLCS makes the design of fuzzy logic controllers
more practical for real-world applications since it greatly lessens the
quality and quantity requirements of the feedback training signals.

Figure 1 shows the structure of our NN-FLCS which has five layers.
Nodes at layer one are input nodes which represent input linguistic vari-
ables. Layer five is the output layer. Nodes at layers two and four are
term nodes and act as membership functions to represent the terms of the
respective linguistic variable. Each node at layer three is a rule node
which represents one fuzzy logic rule. Thus, all layer-three nodes form a
fuzzy rule base. Layer-three links define the preconditions of the rule
nodes, and layer-four links define the consequences of the rule nodes.
The links at layers two and five are fully connected between linguistic
nodes and their corresponding term nodes. We shall next describe the
functions of the nodes in each of the five layers of the proposed connec-
tionist model. In the following, f is an integration function of a node,
which combines activation from other nodes to provide net input for this
node. a is an activation function of a node, which outputs an activation
value as a function of net input. In the following equations, superscript is
used to indicate the layer number.

W Layer 1: The nodes in this layer transmit input values directly to the

next layer. That is,
f=u! and a=f. 1)
From Eq. (1), the link weight at layer one (w}) is unity.

B Layer 2: If we use a single node to perform a simple membership
function, then the output function of this node should be this member-
ship function. For example, for a bell-shaped function,

2 2
u; —m;;
(—-——i—i)— and a=e,)
i
where m;; and a;; are, respectively, the center (or mean) and the width
(or variance) of the bell-shaped function of the jth term of the ith
input linguistic variable x;. Hence, the link weight at layer two (w,—2,-)
can be interpreted as m;;.

W Layer 3: The links in this layer are used to perform precondition
matching of fuzzy logic rules. Hence, the rule nodes should perform
the fuzzy AND operation,

f=Mi(m;, 0,5 =-

f=min(u] ,u}, - ,u)) and a=f. 3)
The link weight in layer three (w?) is then unity.
B Layer 4 The links at layer four perform the fuzzy OR operation to
integrate the fired rules which have the same consequence,
4
f=%u} and a=min(l,f). @)
i=1

Hence the link weight w! = 1.

~993

B Layer 5: The nodes in this layer transmit the decision signal out of
the network. These nodes and the layer-five links attached to them
act as the defuzzifier. If m3;’s and 63;’s are the centers and the widths
of the membership functions, respectively, then the following func-
tions can be used to simulate the center of area defuzzification
method [31:

f=3wiul = Tmzo)u and a= }:Uf-»u5 . (M)
ijli

Here the link weight at layer five (w?,-) is m;c;;.

2. On-line Structure/Parameter Learning Algorithm

We first propose an on-line leaming algorithm that can dynamically
leam the network structure and parameters simultaneously. The proposed
structure/parameter learning algorithm uses the fuzzy similarity measure
[10] to perform the structure learning and the back-propagation algorithm
to perform the parameter learning. Given the supervised training data,
the proposed leaming algorithm first decides whether or not to perform
the structure learning based on the fuzzy similarity measure of the output
membership functions. If the structure leaming is necessary, then it will
further decide whether or not to add a new output term node (a new
membership function), and it will also change the consequences of some
fuzzy logic rules properly. After the structure leaming process, the
parameter leamming will be performed to adjust the parameters of current
membership functions. This structure/parameter learning will be
repeated for each on-line incoming training input/output data pair. After
the structure/parameter training loop has been performed, rule combina-
tion is then initiated to find the minimum node representation of fuzzy
logic rules as in [9].

An initial form of the network is first constructed before this network
is trained. Then, during the learning process, new output term nodes may
be added and some connections may be changed. Finally, after the leamn-
ing process, some nodes and links of the network will be deleted or com-
bined to form the final structure of the network. The initial form of the
network is same as that described in [9], except that there is only one link
between a rule node and an output linguistic variable. This link is con-
nected to some term node of the output linguistic variable. The initiat
candidate (term node) of the consequence of a rule node can be assigned
by an expert (if possible) or be chosen randomly. A suitable term in each
output linguistic variable's term set will be chosen for each rule node
after the leaming process.

After the initialization process, the learning algorithm enters the train-
ing loop in which each loop corresponds to a set of training input data
x(r),i=1,..,n, and the desired output value y;(t),i=1,..m, at a
specific time 1. Basically, the idea of back-propagation [7] is used for this
supervised leaming to find the errors of node outputs in each layer. Then,
these errors are analyzed by the fuzzy similarity measure to perform
structure adjustments or parameter adjustments. The goal is to minimize
the error function ’

E= %[y(r) ~5OF ©

where y (7) is the desired output, and y(¢) is the current output. For each
training data set, starting at the input nodes, a forward pass is used to
compute the activity levels of all the nodes in the network. Then starting
at the output nodes, a backward pass is used to compute 3E/0y for all the
hidden nodes. Assuming that w is the adjustable parameter in a node
(e.g., center of a membership function), the general learning rule used is
9E _ aE_a_f._a_Ea_”i 0
ow df aw da of ow
where 1 is the leaming rate. To show the learning rules, we derive the
rules layer by layer using the bell-shaped membership functions with
centers m;’s and widths o;’s as the adjustable parameters for these com-
putations.

M Layer 5: Using Eqgs. (5) and (6), the expected updated amount of the
center parameter m; and the width parameter o; are, respectively,

wit+D)=w() + n(—%s-) and

o o;u;
Ami(t) & my(t+)-mi@) =y (1) - FO) 55— - ®
o miu; (G o) — (micsiuu;
Aci() A o1+, =m[y (1) - §(1)] z sz)
o)
The error to be propagated to the previous layer is
§="9E_Z9Ed_ .y 0. (10)

9f oda of
o Fuzzy Similarity Measure: In this step, the system will decide if the
current structure should be changed or not according to the expected

updated amount of the center and width parameters. To do this, the
expected center and width are, respectively, computed as

My pew = M (1) + AM(8) ADA O ey = 6;(F) + AT (D). ay

From the current membership functions of output linguistic variables,
we want to find the one which is the most similar to the expected
membership function by measuring their fuzzy similarity. Let
M (m; , o;) represent the bell-shaped membership function with center
m; and width ;. Let

degree(i N =EMm;_p. . oi-new) M (mi—clnsesl s Giclosest)] (12)

= max E [M(mi-ntw » ci—new) v M(mj ’ Gj)],
1<jsk
where k= | T(y) |, E(, -) is the fuzzy similarity. If A and B are two
fuzzy sets with bell-shaped membership functions, The approximate
fuzzy similarity measure of A and B, E(A, B), can be computed as
follow: Assuming m, 2 m,,

MANB) _ M@A MNB)

E@A,B)= . a3)
MAUB) o\t +6,Vn ~-MA N B)
2 -
Here M(ANB)=L1 Ky = my + ¥R (@, + o) + (14)
2 \j;‘_(c] +03)
1 h¥my~my +Vr(o, ~0)) 1 himy—m, ~ ‘[7;(01 -62))

= +
2 Vr(o; - o)) 2 Ve (0, - 03)

where h(x) =max{0, x). After the most similar membership func-
tion M (M;_ciosess » Oi—ciosess) 10 the expected membership function
M (Mi_pew » Oi—new) has been found, the following adjustment is made:
IF degree(i , t) < af?),
THEN

’

create a new node M (m;_,..,, , G;_p.) in layer 4
and denote this node as the i —closest node,
do the structure learning process,
ELSE IF M (m;_ctosest » Oi—closest) 2 M (m;, ©;)
THEN
do the structure learning process,
ELSE
do the following parameter adjustments;

m;(t+1) =m;_p,,, and Oi(t+1) =0;_p.

skip the structure learning process.

a(t) is a monotonically increasing scalar similarity criterion.

e Structure Learning: To find the rules whose consequences should be
changed, we set a firing strength threshold, B. Only the rules whose
firing strengths are higher than this threshold are treated as really
firing rules. Only the really firing rules are considered to be changing
their consequences, since only these rules are fired strongly enough to
contribute to the above results of judgement. Assuming that the term

node M (m;, ;) in layer 4 has inputs from rule nodes 1, ---,/ in
layer 3, whose corresponding firing strength are a?'s, i=1, -+, |,
then

IF a}(t) 2 B, THEN change the consequence of the ith rule
node from M (m; , 6;) 10 M (M;_npy , Gipers).

B Layer 4: There is no parameter to be adjusted in this layer. Only the
error signals (57’s) need to be computed and propagated. From Egs.
(4) and (5), the error signal 8} is derived as:

m;c;(Xoiu;) ~ (I mioiu)o;

Sou;)? ’

B Layer 3: As in layer four, only the error signals need to be computed.

According to Eq. (3), this error signal can be derived as: 87 =8¢ . If
there are multiple outputs, the error signal becomes 57 = ¥'5¢ . Here

B =ly®-ynl (15)

k
the summation is performed over the consequences of a rule node.
B Layer 2: Using Eq. (7) and Egs. (2) and (3), the adaptive rule of m;
and g;; are, respectively,

oE 1 2u;-my)

S =m0 - 2L . 16
m;(t+1) = my;($) naaie o (i6)
2u; — my))?
Gij(1+1)=0ij(‘)‘ﬂg§‘ et —(j‘—f"— , an
fl i

where gTE =Y4: . The summation here is performed over the rule
i K

nodes that a; feeds into, and
{82 if a; is minimum in kth rule node’s inputs

W= 0 otherwise.

(18)

—994 —

3. Structure/Parameter Learning Algorithm for RNN-FLCS

Unlike the supervised learning problem, the reinforcement leaming
problem has only very simple “‘evaluative’’ information called reinforce-
ment signal available for learning. In this paper, the reinforcement signai
r(t) is defined as a value between -1 and 1 corresponding to various
degrees of failure or success. We also assume that r(¢) is the reinforce-
ment signal available at time step 7 and is caused by the input and actions
chosen at time step ¢—1 or even affected by earlier inputs and actions.
The objective of learning is to maximize the reinforcement signal. The
proposed RNN-FLCS, as shown in Fig. 2, integrates two NN-FLCs into a
learning system: on¢ NN-FLC for the fuzzy controller and the other for
the fuzzy predictor. These two NN-FLCs share the same layers 1 and 2
and have individual layer 3 to layer 5. In this section, a reinforcement
learning algorithm is proposed for the RNN-FLCS with a single-step
fuzzy predictor to solve simpler reinforcement leaming problems in
which a reinforcement signal is only one time step behind its correspond-
ing action. For the case that there is a long time delay between an action
and the resulting reinforcement signal, a more powerful multi-step fuzzy
predictor is necessary for the RNN-FL.CS.

3.1. Stochastic Exploration

In this subsection, we first develop the learning algorithm for the
action network. The goal of the reinforcement structure/parameter leam-
ing algorithm is to adjust the parameters (e.g., m;’s) of the action network
or to change the connectionist structure or even to add new nodes, if
necessary, such tha(the reinforcement signal is maximum. That is,
Am; o< a—”:l— To know —ale we need to know 3;7, where y is the output
of the action network. In our learning algorithm, the gradient informa-
tion, -a-r-, is estimated by the stochastic exploratory method {12]. In

estimating the gradient information, the output y of the action network
does not act on the environment directly. Instead, it is treated as a mean
(expected) action. The actual action, Y, is chosen by exploring a range
around this mean point. This range of exploration corresponds to the
variance of a probability function, which is the normal distribution in our
design. This amount of exploration, o(t), is chosen as

k k
o) = 5[1 - tanh(p (1))] = 1

T (19)

where k is a search-range scaling constant which can be simply set to 1,
and p (1) is the predicted (expected) reinforcement signal used to predict
r(t). Once the variance has been decided, the actual output of the sto-
chastic node can be set as y(t) = N(y(r), o(t)). The gradient information
is estimated as

.g_; =[r(t)-p)] [M_YM] =[r@)-pwl [% 20

=1

o(t-1)

where the subscript, #-1, represents the time displacement. Assuming
that w is an adjustable parameter in a node (¢.g., the center of a member-
ship function), the general parameter learning rule used is (as in Eq. (7))
or _ or da df

= e 21
ow da df ow @n
W Layer 5: Using Eqs. (5), (20), and (21), the expected updated amount

of the center parameter and the width parameter are respectively

y O;U;
Ami@)=nlr) -p®] [l:—y-} [——} . (22)
o -1 Zciui -1

m;u, (Y o) — (mioiu)u;
o)’

w(t+1)=w(t)+n(§—£)—) and

AS) =nLr () -p()] [’—‘—Y-]
o =1 -1

The error 10 be propagated to the preceding layer is

o _or da
aff oa af

Fuzzy Similarity Measure: In this step, the system will decide whether

the current structure should be changed or not according to the expected

updated amount of the center and width parameters (in Eqs. (22) and

(23)). This procedure of using the fuzzy similarity measure is the same

as for the on-line leaming algorithm.

B Layer 4: There is no parameter to be adjusted in this layer. Only the
error signals (57's) need to be computed and propagated. From Egs.
(5) and (21), the error signal 87 is derived as

mic; (L oiu;) — (X mioi;)o;
o

S = =[r(x)-p(:)1[!l(_"l] . (24)

-1

(25)

-1

S =[r(-p®] [j_—_y]
o

-1

In the multi-output case, the computations in layers five and four are
exactly the same as the above using the same internal reinforcement
signals and proceeding independently for each output linguistic vari-
able.

W Layer 3: As in layer four, only the error signals need to be computed.
According to Egs. (4) and (21), this error signal can be derived as
83(t)=8(1). If there are multiple outputs, then the error signal
becomes §7(f) = ¥, 84(¢), where the summation is performed over the

k
consequences of a rule node; that is, the error of a nule node is the
summation of the errors of its consequences.

B Layer 2: Using Egs. (2) and (21), the adaptive rule of m; and o;; are
respectively

d 2(u; — my;)
'"ii(’+1)='"ij(')~ﬂ[‘37r,} [eﬁ B -] . (26)
' h ij -1
or p 2u; — m;)? .’
ciit+) =0, - 2 | |e —
il i i-1

where 27 = ¥ 4, (1) as in Eq. (18).
all,' X

3.2. Single-Step Fuzzy Predictor

We shall use an NN-FLC to develop a single-step fuzzy predictor
(evaluation network) as shown in Fig. 2. The function of the single-step
fuzzy predictor is to predict the external reinforcement signal, r(¢), one
time step ahead, that is, at time r—1. Here, r(t) is the real reinforcement
signal resulting from the inputs and actions chosen at time step £~1, but it
can only be known at time step 7. If the fuzzy predictor can produce a
signal, p (f), which is the prediction of r(¢) but is available at time step
t—1, then the time delay problem can be solved. With a correct predicted
signal, p (t), a better action can be chosen by the action network at time
step -1, and the corresponding learmning can be performed on the action
network at time step f upon receiving the external reinforcement signal
r(t). As indicated in the last subsection, p (¢) is necessary for the stochas-
tic exploration with a multi-parameter probability distribution (in Eq.
(6)). The other internal reinforcement signal, 7(?), in Fig. 2 is set as
F(t) = r (1) — p (t), which is the prediction error for computing Eq. (7) by
the action network. The single-step prediction is the extreme case of the
multi-step prediction which will be presented in the next section. The
goal to train the single-step fuzzy predictor is to minimize the squared
error prediction:

E=20®-p@F, @

where r(t) represents the desired output (real external reinforcement sig-
nal), and p (1) is the current output (predicted reinforcement signal). Then

the gradient information can be easily derived as —a——-= p@)—r).

Similar to the leaming rule developed in the last section, we can derive
the structure/parameter leamning algorithm for the single-step fuzzy pred-
ictor using the general parameter learning rule:

w(t+D=w)+n(- W)' where w is the adjustable parameters in the
fuzzy predictor. The learning equations are the same as Eqs. (21)-(26) if

a_; is replaced by (~ 35—) and the effects caused by this replacement are
properly updated, that is, all the erms [r () - p ()] y_;l] in Egs.
~1

(21)-(26) are replaced with the term [r (2) — p(1)].

3.3. Multi-Step Fuzzy Predictor

When both the reinforcement signal and input patterns from the
environment may depend arbitrarily on the past history of the network
output and the network may only receive a reinforcement signal after a
long sequence of outputs, the credit assignment problem becomes severe.
This temporal credit assignment problem results because we need to
assign credit or blame to each step individually in such a long sequence
for an eventual success or failure. To solve the temporal credit assign-
ment problem, the technique based on the temporal-difference methods
[13,14), which are often closely related to the dynamic programming
techniques [15], is used. Unlike the single-step prediction or the super-
vised leamning method which assigns credit according to the difference
between the predicted and actual output, the temporal-difference methods
assign credit according to the difference between temporally successive
predictions. See [11] for more details on this multi-step fuzzy predictor.

4. Conclusion

A general connectionist model of a fuzzy logic control system called
NN-FLCS was proposed. To incorporate the NN-FL.CS with on-line
leaming ability, an on-line structure/parameter leaming algorithm was

—995 -

proposed. This on-line learning algorithm utilized the fuzzy similarity
measure and the back propagation to provide a novel scheme 1o combine
the structure leaming and the parameter learning such that the whole net-
work structure with correct parameters can be set up on-line. Then two
NN-FLCs are closely integrated into a Reinforcement Neural-Network-
Based Fuzzy Logic Control System (RNN-FLCS) for solving various
reinforcement learning problems. Furthermore, by combining the tech-
niques of temporal difference, stochastic exploration, and the proposed
on-line supervised structure/parameter leamning algorithm, a reinforce-
ment structure/parameter learning algorithm was derived for the RNN-
FL.CS. Using the proposed reinforcement leaming algorithm, a fuzzy
logic controller to control a plant and a fuzzy predictor to model the plant
can be set up dynamically through simultaneous structure/parameter
leamning for various classes of reinforcement learning problems. The pro-
posed RNN-FL.CS makes the design of fuzzy logic controllers more prac-
tical for real-world applications since it greatly lessens the quality and
quantity requirements of the feedback training signals.

5. References

[11 L. A.Zadeh, ‘‘Fuzzy logic,” IEEE Computer, Apr. 1988, pp. 83-93.

[2] M. Sugeno, Ed. Industrial Applications of Fuzzy Control, Amster-
dam: North-Holland, 1985.

[3]1 C.C.Lee, ‘‘Fuzzy logic in control systems: fuzzy logic controller —
part 1 & I1,”” IEEE Trans. Syst. Man Cybern., Vol. SMC-20, No. 2,
1990, pp. 404-435.

{4] R. Tanscheit and E. M. Scharf, ‘‘Experiments with the use of a
rule-based self-organizing controller for robotics applications,”
Fuzzy Sets Syst., Vol. 26, 1988, pp. 195-214,

[5]1 M. Sugeno and M. Nishida, ‘‘Fuzzy control of model car,”” Fuzzy
sets Syst., Vol. 16, 1985, pp. 103-113,

Layer 3
(rule nodes)

Layer2
(impul eom
‘nodes)

Layer 1

(inpus
linguistic
todes)

Figure 1. Proposed Neural-Network-Based Fuzzy Logic
Control System (NN-FLCS).

[6] G. E. Hinton, J. L. McClelland, and D. E. Rumelhart, ‘‘Distributed
representations,’’ in Parallel Distributed Processing, Vol. 1, MIT
Press, Cambridge, 1986, pp. 77-109.

[7] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, ‘‘Learning inter-
nal representations by error propagation,”” in Parallel Distributed
Processing, Vol. 1, MIT Press, Cambridge, 1986, pp. 318-362.

(8] B. Kosko, ‘‘Unsupervised leaming in noise,”” IEEE Trans. on
Neural Networks, Vol. 1, No. 1, 1990, pp. 44-57.

9] C.T.Linand C.S. G. Lee, ‘‘Neural-network-based fuzzy logic con-
trol and decision system,”” /EEE Trans. on Computers, Vol. C40,
No. 12, pp. 1320-1336, Dec. 1991.

[10) C. T. Lin and C. S. G. Lee, ‘“Real-Time Supervised
Structure/parameter Learning for Fuzzy Neural Network,”* Proc. of
1992 IEEE Int’l Conf. on Fuzzy Systems, San Diego, CA, pp.
1283-1290, March 8-12, 1992.

[11] C.T. Lin and C. S. G. Lee, ‘‘Reinforcement Structure/Parameter

Leamning for an Integrated Fuzzy Neural Network,”” to appear in
IEEE Transactions on Fuzzy Systems.

{12} J. A. Franklin, ‘‘Input space representation for reinforcement learn-
ing control,”” Proc. of IEEE Int’l Conf. Intelligent Machine, pp.
115-122, 1989.

[13] A.G. Barto, R. S. Sutton, and C. W. Anderson, ‘‘Neuronlike adap-
tive elements that can solve difficult learning control problems,”’
IEEE Trans. Syst. Man Cybern., Vol. 13, No. 5, pp. 834-847, 1983.

[14] R. S. Sutton, ‘‘Learning to predict by the methods of temporal
difference,”” Machine Learning, Vol. 3, pp. 9-44, 1988.

[15] P.J. Werbos, ‘‘A menu of design for reinforcement learning over
time,”’ in Neural Networks for Control, W. T. Miller, 111, R. S. Sut-
ton, and P. J. Werbos, eds, Cambridge: MIT Press, 1990.

Environment status
X(t)

external
reinforcement 1520 .
r(t+h) signal YOy actions
plt+1)
F(t+1)
FUZzZY
PREDICTOR fc_)r:]mm DEFUZZIFIER
sig Output Membership
Functions
1)
RULE
MATCHING
istributed Representation
Input Membership FUZZIFIER
Functions
X(t)
Input States

Figure 2. Proposed Reinforcement Neural-Network-Based
Fuzzy Logic Control System (RNN-FLCS).

—0996—

