• 제목/요약/키워드: T-S Fuzzy

검색결과 416건 처리시간 0.042초

H-infinity Discrete Time Fuzzy Controller Design Based on Bilinear Matrix Inequality

  • Chen M.;Feng G.;Zhou S.S.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제6권2호
    • /
    • pp.127-137
    • /
    • 2006
  • This paper presents an $H_{\infty}$ controller synthesis method for discrete time fuzzy dynamic systems based on a piecewise smooth Lyapunov function. The basic idea of the proposed approach is to construct controllers for the fuzzy dynamic systems in such a way that a Piecewise smooth Lyapunov function can be used to establish the global stability with $H_{\infty}$ performance of the resulting closed loop fuzzy control systems. It is shown that the control laws can be obtained by solving a set of Bilinear Matrix Inequalities (BMIs). An example is given to illustrate the application of the proposed method.

BIPOLAR FUZZY SET THEORY APPLIED TO SUB-SEMIGROUPS WITH OPERATORS IN SEMIGROUPS

  • Kang, Mee-Kwang;Kang, Jeong-Gi
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제19권1호
    • /
    • pp.23-35
    • /
    • 2012
  • Given a set ${\Omega}$ and the notion of bipolar valued fuzzy sets, the concept of a bipolar ${\Omega}$-fuzzy sub-semigroup in semigroups is introduced, and related properties are investigated. Using bipolar ${\Omega}$-fuzzy sub-semigroups, bipolar fuzzy sub-semigroups are constructed. Conversely, bipolar ${\Omega}$-fuzzy sub-semigroups are established by using bipolar fuzzy sub-semigroups. A characterizations of a bipolar ${\Omega}$-fuzzy sub-semigroup is provided, and normal bipolar ${\Omega}$-fuzzy sub-semigroups are discussed. How the homomorphic images and inverse images of bipolar ${\Omega}$-fuzzy sub-semigroups become bipolar ${\Omega}$-fuzzy sub-semigroups are considered.

바퀴형 역진자 시스템의 T-S Fuzzy Modeling에 관한 연구 (Study on the T-S Fuzzy Modeling in Cart-Type Inverted Pendulum System)

  • 이승택;이동광;곽군평;박승규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1858-1859
    • /
    • 2011
  • 제어를 할 때 비선형 시스템을 선형화 하는 것이 중요하다. 선형화를 하기위해는 퍼지 모델을 사용하는데 그 중 바퀴형 역진자 시스템은 비선형 시스템의 파라미터 값을 모두 알아도 T-S퍼지를 기반으로 하여 선형제어를 사용하는데 어려움이 있다. 그래서 Identification을 함으로써 바퀴형 역진자 시스템을 좀 더 편리하게 T-S 퍼지 모델로 만들 수 있다.

  • PDF

원전 증기발생기 수위제어계통의 고장검출 시스템 설계 (A Fault Detection System Design for Nuclear Steam Generator Level Control System)

  • 류석환;최병재
    • 한국지능시스템학회논문지
    • /
    • 제16권2호
    • /
    • pp.191-197
    • /
    • 2006
  • 본 논문에서는 원저 증기발생기 수위제어계통을 위한 고장검출 시스템을 설계한다. 이를 위하여 증기발생기 수위제어계통의 비선형 동적방정식을 미지의 매개변수를 갖는 T-S 퍼지시스템으로 모델링하고 좌 소인수 분해를 이용하여 오차발생기를 설계한다. 고장검출의 성능을 향상시키기 위하여 고장검출 필터의 설계법을 제안한다. 제시한 방법의 효용성을 컴퓨터 모의실험을 통하여 입증한다.

패턴인식을 위한 Type-2 Fuzzy Neural Networks (Type-2 Fuzzy Neural Networks for Pattern recognition)

  • 지광희;김현기;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1869_1870
    • /
    • 2009
  • 본 논문에서는 다항식 기반 Type-2 Fuzzy Neural Networks(T2FNN)를 설계하고 이를 패턴분류 문제에 적용하여 그 성능을 분석한다. T2FNN은 Fuzzy C-Means(FCM)을 Type-2 Fuzzy C-Means로 확장시킨 것이라 할 수 있으며, Input layer, Fuzzyification layer, Inference layer, Deffuzification layer의 4층 네트워크로 구성된다. interval Type-1 퍼지 집합인 후반부의 연결가중치는 Gradient Descent Method를 이용하여 학습한다. 제안된 RBF 신경회로망은 모의데이터와 패턴인식 성능 평가에 많이 사용되는 machine learning 데이터에 적용하여 패턴 분류기로서의 성능을 평가받는다.

  • PDF

직관적 퍼지 거리공간에서 공통부동점 정리 및 예제 (Common fixed point theorem and example in intuitionistic fuzzy metric space)

  • 박종서;김선유
    • 한국지능시스템학회논문지
    • /
    • 제18권4호
    • /
    • pp.524-529
    • /
    • 2008
  • Park et.al.[10] defined the intuitionistic fuzzy metric space in which it is a little revised in Park[4], and Park et.a1.[7] proved a fixed point theorem of Banach for the contractive mapping of a complete intuitionistic fuzzy metric space. In this paper, we will establish common fixed point theorem for four self maps in intuitionistic fuzzy metric space. These results have been used to obtain translation and generalization of Grabiec's contraction principle.

Exact Solutions of Fuzzy Goal Programming Problems using $\alpha-cut$ Representations

  • Hong, Dug-Hun;Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제15권2호
    • /
    • pp.457-465
    • /
    • 2004
  • Ramik[7] introduced a fuzzy goal programming (FGP)problem that generalizes a standard goal programming (GP) problem with fuzzy alternatives, fuzzy objective functions and fuzzy deviation functions for measuring the deviation between attained and desired goals being fuzzy. However, it is known that this FGP tends to produce an approximate solution since it uses an approximate fuzzy multiplication operation to solve the resultant fuzzy model. In this paper, we show that this FGP sometimes leads to the wrong decision. We also propose a procedure that gets the exact solution to overcome these problems. The method is based on $T_M$ (min norm)-based fuzzy operations using $\alpha-cut$ representations. We consider the same example as used in Ramik and investigate how our procedures are compared to Ramik's.

  • PDF

A NOVEL DISCUSSION ON POWER FUZZY GRAPHS AND THEIR APPLICATION IN DECISION MAKING

  • T. BHARATHI;S. SHINY PAULIN;BIJAN DAVVAZ
    • Journal of applied mathematics & informatics
    • /
    • 제42권1호
    • /
    • pp.123-137
    • /
    • 2024
  • In this paper, Power fuzzy graphs is newly introduced by allotting fuzzy values on power graphs in such a way that the newly added edges, has the edge membership values between a closed interval which depends on vertex membership values and the length of the added edges. Power fuzzy subgraphs and total power fuzzy graphs are newly defined with properties and some special cases. It is observed that every power fuzzy graph is a fuzzy graph but the converse need not be true. Edges that are incident to vertices with the least vertex membership values are retained in the least power fuzzy subgraph. Further, the application of these concepts in real life time has been presented and discussed using power fuzzy graph model.

Fuzzy Logic PID controller based on FPGA

  • Tipsuwanporn, V.;Runghimmawan, T.;Krongratana, V.;Suesut, T.;Jitnaknan, P.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1066-1070
    • /
    • 2003
  • Recently technologies have created new principle and theory but the PID control system remains its popularity as the PID controller contains simple structure, including maintenance and parameter adjustment being so simple. Thus, this paper proposes auto tune PID by fuzzy logic controller based on FPGA which to achieve real time and small size circuit board. The digital PID controller design to consist of analog to digital converter which use chip TDA8763AM/3 (10 bit high-speed low power ADC), digital to analog converter which use two chip DAC08 (8 bit digital to analog converters) and fuzzy logic tune digital PID processor embedded on chip FPGA XC2S50-5tq-144. The digital PID processor was designed by fundamental PID equation which architectures including multiplier, adder, subtracter and some other logic gate. The fuzzy logic tune digital PID was designed by look up table (LUT) method which data storage into ROM refer from trial and error process. The digital PID processor verified behavior by the application program ModelSimXE. The result of simulation when input is units step and vary controller gain ($K_p$, $K_i$ and $K_d$) are similarity with theory of PID and maximum execution time is 150 ns/action at frequency are 30 MHz. The fuzzy logic tune digital PID controller based on FPGA was verified by control model of level control system which can control level into model are correctly and rapidly. Finally, this design use small size circuit board and very faster than computer and microcontroller.

  • PDF

특이섭동을 포함한 타카기 - 수게노 형태의 비선형 시스템을 위한 새로운 샘플치 제어기의 설계기법 제안 (Sampled-Data Controller Design for Nonlinear Systems Including Singular Perturbation in Takagi-Sugeno Form)

  • 문지현;이재준;이호재
    • 한국지능시스템학회논문지
    • /
    • 제26권1호
    • /
    • pp.50-55
    • /
    • 2016
  • 본 논문은 특이섭동을 포함한 비선형 시스템을 위한 샘플치 제어 기법을 논한다. 비선형 시스템은 타카기--수게노(Takagi--Sugeno: T--S) 퍼지모델 형태로 표현됨을 가정한다. 새로운 리아푸노프 함수와 추가적인 항등식을 이용하여 선형행렬부등식 형태의 샘플치 폐루프 T--S 퍼지시스템의 점근적 안정도 조건을 제시한다. 분석결과에 대한 몇 가지 논의점을 언급한다. 모의실험에 의하여 제안된 기법의 타당성을 보인다.