• Title/Summary/Keyword: T-DMB Antenna

Search Result 21, Processing Time 0.023 seconds

Design of a Multi-Stripline Loaded On-Glass Antenna for T-DMB Applications (다중 선로가 로딩된 T-DMB 수신용 차량 글래스 안테나 설계)

  • Kang, Woo-Joong;Kay, Young-Chul;Park, Seul-Gi;Oh, Jung-Hun;Choo, Ho-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.7
    • /
    • pp.664-672
    • /
    • 2009
  • In this paper we propose an on-glass antenna which consists of conducting dual center striplines and multi-loaded striplines. Multi-loaded striplines and dual center lines were employed for achieving a broad matching bandwidth and improving a vertical radiation gain, respectively. The detail design parameters were determined using the Pareto genetic algorithm with an full wave EM simulator. The optimized design was built and installed on a commercial vehicle, and the antenna performances such as the return loss and the radiation gain were measured in a semi-anechoic chamber. The measurement results showed the matching bandwidth($S_{11}$<-3 dB) of about 49 % in the T-DMB frequency band, the vertical gain of about -3 dBi along the bore-sight direction, and the average gain of about -10 dBi along the azimuth direction.

A Study on the Amplification Block for Integrated Antenna Module Applicable to Vehicles (차량용 통합 안테나 모듈용 증폭단에 관한 연구)

  • Go, Min-Ho;Pyo, Seung-Chul;Park, Hyo-Dal
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.4 no.2
    • /
    • pp.87-92
    • /
    • 2009
  • In this paper, we designed and fabricated the active amplification block for the integrated antenna module. The fabricated amplification module have a proper gain and low noise figure in the band of AM/FM band, T-DMB band and GPS band, and show good isolation performance for each band. Manufactured circuits satisfied the gain performance 7 dB in AM band, 11 dB in FM band, 10 dB in T-DMB, and 17 dB in GPS band. The integrated amplification block was realized by 35 mm*35 mm size, and was shown as the same sensitivity performance as compared with a conventional reference antennas.

  • PDF

Improving the Reception Performance of Legacy T-DMB/DAB Receivers in a Single-Frequency Network with Delay Diversity

  • Baek, Myung-Sun;Lee, Yong-Hoon;Hur, Namho;Kim, Kyung-Seok;Lee, Yong-Tae
    • ETRI Journal
    • /
    • v.36 no.2
    • /
    • pp.188-196
    • /
    • 2014
  • This paper describes a simple delay diversity technique for terrestrial digital multimedia broadcasting (T-DMB) and digital audio broadcasting in a single-frequency network (SFN). For the diversity technique, a delay diversity scheme is adopted. In the delay diversity scheme, a non-delayed signal is transmitted in the first antenna, and delayed versions of the signal are transmitted in each additional antenna. For an SFN environment with multiple transmitters, delay diversity can be executed by controlling the emission times of the transmitters. This SFN delay diversity scheme does not require any hardware changes in either the transmitter or receiver, and perfect backward compatibility can be acquired. To evaluate the performance improvement, laboratory tests are executed with various types of commercial T-DMB receivers as well as a measurement receiver. The improvement in the bit error rate performance is evaluated using a measurement receiver, and an improvement of the threshold of visibility value is evaluated for commercial receivers. Test results show that the T-DMB system can obtain diversity gain using the described technique.

Optimized Design of Mobile Communication Antenna In the Underground Area (지하공간에서의 이동통신 셀 설계에 관한 연구)

  • Oh, Sung-Kyun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.1
    • /
    • pp.27-32
    • /
    • 2008
  • In the signals-shadowed areas, In order to providing the suitable signals reception level repeaters are used for relay the signals. Repeater receives the weak signals and amplifies it up to required power level, The amplified signals get radiated by the various methods. Both antenna distribution and LCX(Leakage Coaxial Cable) are typical methods in the repeater and BTS signals radiation. Their applications are depended on the environment condition and frequency band. Generally the antenna distribution are used for the mobile telecommunication networks which use the higher frequency band than 500MHz. On the other side, LCX distribution is suitable to the frequency band under 500MHz. The network plan of repeater in FM, T-DMB, Fire Radio and Internal subway communication network are the typical LCX application fields. Cell planning with repeaters are based on the free space loss, LCX connection loss and actual field data. The actual field data can be the most important factor to design the network planning.

Compensation of RF Impairment and Performance Improvement of Digital on Channel Repeater in the T-DMB (T-DMB 동일 채널 중계기의 RF 불균형 보상 및 성능 개선)

  • Kim, Gi-Young;Ryu, Sang-Burm;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.4
    • /
    • pp.453-461
    • /
    • 2011
  • In order to use more efficiently limited frequency resources at the broadcasting band and to eliminate blanket area of the terrestrial broadcasting and to improve broadcasting quality. The importance of repeaters has increasing continuously. However, in case of T-DMB digital on channel repeater in OFDM systems, some of the signal radiated feedback again at the receiver antenna. So it generates feedback signal interference in repeater system. Also phase noise increases ICI(Inter Carrier Interference). It affects seriously the frequency domain equalizer. In this paper, we remove the feedback signal interference by LMS with correlation. Also we propose an effective equalizer algorithm that can remove ICI caused by phase noise and the power amplifier's back-off. In this simulation results, this system is satisfied the performance of BER=$10^{-4}$ at less than SNR=14 dB after compensation of phase noise.

Feedback Cancellation Based on Partitioned Time-Domain Pilots for T-DMB Repeaters (시간영역 파일럿 분할을 통한 T-DMB 중계기에서의 궤환신호 제거기법)

  • Lee, Ji-Bong;Kim, Wan-Jin;Park, Sung-Ik;Lee, Yong-Tae;Kim, Hyoung-Nam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.3A
    • /
    • pp.327-334
    • /
    • 2008
  • Conventional on-channel-repeaters (OCRs) have a crucial problem that the power of a re-transmitted signal is highly limited by a feedback signal due to antenna coupling. The power limitation problem in OCRs has been solved by incorporating a demodulation-type feedback canceller which eliminates unwanted feedback signals by estimating a feedback channel. In applying the demodulation-type feedback canceller to T-DMB repeaters, there is a troublesome problem of unfrequent known pilot symbols, resulting in poor convergence performance of channel estimation. To solve this problem and enhance the accuracy of estimation, we propose a partitioning method of the Phase Reference Symbol (PRS) transformed in time domain. Since filter coefficients are updated every one partitioned subgroup, the number of updates is increased by the number of partitioned subgroups and thus the convergence speed is enhanced. The improved performance of feedback-channel estimation is directly connected with the feedback-cancellation performance. Simulation result shows that the feedback canceller incorporating the proposed partitioning method has a good performance in terms of residual feedback power.

Compact Ferrite Antenna for T-DMB Applications

  • Bae, Seok;Hong, Yang-Ki;Lee, Jae-Jin;Jalli, Jeevan;Abo, Gavin S.;Nam, In-Tak;Kum, Jun-Sig;Kim, Gi-Ho;Park, Sang-Hoon;Seong, Won-Mo
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2009.05a
    • /
    • pp.40-41
    • /
    • 2009
  • PDF

An Interference Cancellation Technique for Digital On-Channel Repeaters for T-DMB (지상파 DMB 디지털 동일 채널 중계기에서의 간섭 제거 기법)

  • Choi, Jin-Yong;Hong, Jin-Kyu;Hur, Min-Sung;Suh, Young-Woo;Seo, Jong-Soo
    • Journal of Broadcast Engineering
    • /
    • v.14 no.2
    • /
    • pp.107-113
    • /
    • 2009
  • In Digital On-Channel Repeaters (DOCR) of Terrestrial-DMB (Digital Multimedia Broadcasting), there exist feedback signals generated from transmit antenna and re-entering at receive antenna. Therefore DOCR becomes unstable unless the feedback signal is properly eliminated. Previous research proposed a feedback canceller to estimate the feedback channel to deal with this problem. However formerly used estimation algorithms show unsatisfied performance in terms of convergence rate and quality although their implementations are simple. This paper applies PNLMS (Proportionate Normalized Least Mean Squares) adaptive algorithm to feedback channel estimation and evaluates the performances which solve the problem of feedback signal effectively.

Equalization On-Channel Repeater for Single Frequency Network of Terrestrial Digital Multimedia Broadcasting (T-DMB의 SFN을 위한 등화형 동일채널 중계기)

  • Park, Sung-Ik;Park, So-Ra;Eum, Ho-Min;Lee, Yong-Tae;Kim, Heung-Mook
    • Journal of Broadcast Engineering
    • /
    • v.13 no.3
    • /
    • pp.365-379
    • /
    • 2008
  • In this paper we consider technological requirements of the on-channel repeater to broadcast the terrestrial digital multimedia broadcasting (T-DMB) signals using single frequency networks (SFN) and propose the configuration and implementation method of the equalization on-channel repeater (OCR) that meet such requirements. The proposed equalization OCR not only has short time delay, but shows high output power and good quality of output signal by removing a feedback signal due to incomplete antenna isolation and multipath signal existing between the main transmitter and the OCR. In addition, computer simulations and laboratory tests results are provided to figure out performance of the proposed equalization OCR.