• Title/Summary/Keyword: T cell migration

Search Result 157, Processing Time 0.023 seconds

Signaling Role of Adipocyte Leptin in Prostate Cell Proliferation Induced by Trichomonas vaginalis

  • Kim, Jung-Hyun;Han, Ik-Hwan;Shin, Su-Jin;Park, Sung-Yul;Chung, Hyo-Yeoung;Ryu, Jae-Sook
    • Parasites, Hosts and Diseases
    • /
    • v.59 no.3
    • /
    • pp.235-249
    • /
    • 2021
  • Leptin is a type of adipokine mainly produced by adipocytes and reported to be overproduced in prostate cancer. However, it is not known whether it stimulates the proliferation of prostate cells. In this study, we investigated whether benign prostatic hyperplasia epithelial cells (BPH-1 cells) infected with Trichomonas vaginalis induced the proliferation of prostate cells via a leptin signaling pathway. To investigate the effect of crosstalk between adipocyte leptin and inflamed epithelial cell in proliferation of prostate cells, adipocytes 3T3-L1 cells were incubated in conditioned medium of BPH-1 cells infected with T. vaginalis (T. vaginalis-conditioned medium, TCM), and then the adipocyte-conditioned medium (ATCM) was identified to cause proliferation of prostate cells. BPH-1 cells incubated with live T. vaginalis released pro-inflammatory cytokines, and conditioned medium of these cells caused migration of adipocytes. When prostate stromal cells and BPH-1 cells were incubated with adipocyte conditioned medium containing leptin, their growth rates increased as did expression of the leptin receptor (known as OBR) and signaling molecules such as JAK2/STAT3, Notch and survivin. Moreover, blocking the OBR reduced this proliferation and the expression of leptin signaling molecules in response to ATCM. In conclusion, our findings show that inflamed BPH-1 cells infected with T. vaginalis induce the proliferation of prostate cells through leptin-OBR signaling. Therefore, it is likely that T. vaginalis contributes to prostate enlargement in BPH via adipocyte leptin released as a result of inflammation of the prostate.

Effects of Phytoestrogen on Cell Growth and Insulin-like Growth Factor-I (IGF-I) Production in MC3T3-El Cells (식물성 에스트로겐이 MC3T3-El 골아세포의 성장과 Insulin-like Growth Factor-1(IGF-1)생성에 미치는 영향)

  • Kwon, Ji-Young;Nam, Taek-Jeong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.6
    • /
    • pp.743-749
    • /
    • 2005
  • Estrogen is known to play an important role in maintaining bone mass, since the concentration of serum estrogen decrease after menopause and the estrogen deficiency results in bone loss. Phytoestrogens are plant compounds with estrogen-like biological activity, In this study, to investigate the bioactivities of phytoestrogen, which act on bone metabolism, we examined the effect of selected food-borne phytoestrogens (genistein, daidzein and resveratrol) on osteoblast proliferation and IGF-I production using MC3T3-El cells, a mouse calvaria osteoblast-like cell line. Cells were cultured in a serum free medium for 48 hr in the presence of genistein $(10^{-5}\;M)$, daidzein $(10^{-5}\;M)$ and resveratrol $(10^{-5}\;M)$. The effects of genistein, daidzein and resveratrol on the cell proliferation and growth were evaluated by total cell numbers, MTS assay and cell migration assay. Their effect was compared with the $17\beta-estradiol$. Genistein, daidzein and resveratrol exhibited stimulatory effects on the growth of MC3T3-El cells, and the most pronounced effect was shown with daidzein. In addition, these phytoestrogen increased alkaline phosphatase activity of MC3T3-El cells. These effects were similar to that of $17\beta-estradiol$ effects. Moreover, treatment with genistein, daidzein and resveratrol increased production of insulin like growth factor-I (IGF-I) in conditioned media, indicating that the growth promoting effects of these phytoestrogen were related to the changes in production of IGF-I by MC3T3-El cells. These results show that genistein, daidzein and resveratrol have a stimulatory effect on osteoblast function, and that these findings in a cell model may prove relevant to protecting against the loss of bone mass and the development of osteoporosis in human subjects.

Study on the Whitening Efficacy and Skin Barrier by Lysosome-related Organelle Extract (LOE) from Egg White (난백(Egg White)에서 추출한 리소좀 추출물(LOE)의 미백 효능 및 피부장벽에 관한 연구)

  • Choi, Da Hee;Jeon, Gyeongchan;Yoon, Jihee;Min, Jiho;Park, Si Jun;Kim, Jung Su;Hwang, Ee Taek;Hwang, Hyung Seo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.45 no.4
    • /
    • pp.389-397
    • /
    • 2019
  • Lysosomes are cellular organelles involved in energy metabolism and intracellular digestion in eukaryotic cells, including protease, nuclease, glycosidase, lipase, and phosphatase. Our previous studies have confirmed that egg white lysosomes had melanin decolorization and reduction activity. However, there have been few studies on skin barrier and skin regeneration as well as inhibition of melanin production by egg white lysosomes on B16F10 melanocyte cell line. In this study, we attempted to identify the effect of lysosome-related organelle extract (LOE) extracted from egg white on the melanin content change and skin barrier enhancement in cells. First, cytotoxicity evaluation was performed on B16F10 melanocyte cell line to confirm the whitening efficacy of LOE. Cytotoxicity by LOE was not observed at 20 mg/mL concentration, but cytotoxicity was observed at 40 mg/mL, and the maximum concentration value was set to 20 mg/mL in all subsequent experiments. LOE samples of 5, 10, 20 mg/mL inhibited melanin production by 61.5 ± 4.0%, 61.4 ± 7.3%, 58.3 ± 8.3%, respectivly, compared to α-MSH, a negative control in melanin contents assay. MITF mRNA expression was reduced by about 39.7 ± 3.2% compared to the α-MSH treatment group. TEER assay using HaCaT showed that LOE increased TEER resistance in a dose-dependent manner, indicating that LOE is involved in strengthening the skin barrier. LOE also increased the TEER resistance under TNF-α treatment. Skin barrier was normally restored by LOE even under the condition of inflammation. LOE had a positive effect on cell division and cell migration promotion, confirmed by the observing the effect of promoting cell migration by LOE through cell migration assay. Taken together, we expect that LOE can be developed as a cosmetic material to enhance has effects on skin regeneration and skin barrier strengthening as well as whitening function if enzyme stabilization and formulation technology are combined.

Optical Microscope Image Processing for Automated Cells Counting (세포 자동 계수를 위한 광학현미경 이미지 처리)

  • Cho, Mi-Gyung;Moon, Sang-Jun;Shim, Jae-Sool
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.11
    • /
    • pp.2493-2499
    • /
    • 2011
  • With growth of nano-bio industry, it is of significant importance to develop an automated system to exploit cell behaviors, including migration, mitosis, apoptosis, shape deformation of individual cells and their interactions among cells in the process of cell growth. In this paper, we proposed preprocessing techniques, a classification method which classifies clusters (overlapping multiple cells) from cells and an automated method which counts the number of cells and clusters in order to analyze 2D or 3D deformations of the cells in the real-time images from microscope in the cell culture. We conducted the 3T3 cell images taken from each thirty-minute interval. It showed the average 99.8% accuracy automatically for separating cells and clusters.

Comparative Analysis on Anti-aging, Anti-adipogenesis, and Anti-tumor Effects of Green Tea Polyphenol Epigallocatechin-3-gallate (녹차의 폴리페놀류인 에피갈로카테킨-3-갈레이트에 의한 항노화, 항비만 및 항암효과에 대한 비교 분석)

  • Lim, Eun-Ji;Kim, Min-Jae;Kim, Hyeon-Ji;Lee, Sung-Ho;Jeon, Byeong-Gyun
    • Journal of Life Science
    • /
    • v.28 no.10
    • /
    • pp.1201-1211
    • /
    • 2018
  • The study compared the anti-aging, anti-adipogenesis, and anti-tumor effects of epigallocatechin-3- gallate (EGCG) in various cancer cell lines (SNU-601, MKN74, AGS, MCF-7, U87-MG, and A-549) and normal cell lines (MRC-5 fibroblasts, dental tissue-derived mesenchymal stem cells [DSC], and 3T3-L1 pro-adipocytes). Half inhibitory concentration ($IC_{50}$) values were significantly (p<0.05) higher in normal cell lines (~50 uM), when compared to that in cancer cell lines (~10 uM). For anti-aging effects, MRC-5 and DSC were exposed to 10 uM EGCG for up to five passages that did not display any growth arrest. Population doubling time and senescence-related ${\beta}-galactosidase$ ($SA-{\beta}-gal$) activity in treated cells were similar to untreated cells. For anti-adipogenic effects, mouse 3T3-L1 pre-adipocytes were induced to adipocytes in an adipogenic differentiation medium containing 10 uM EGCG, but adipogenesis in 3T3-L1 cells was not inhibited by EGCG treatment. For anti-tumor effects, the cancer cell lines were treated with 10 uM EGCG. PDT was significantly (p<0.05) increased in EGCG-treated SNU-601, AGS, MCF-7, and U87-MG cancer cell lines, except in MKN74 and A-549. The level of telomerase activity and cell migration capacity were significantly (p<0.05) reduced, while $SA-{\beta}-gal$ activity was highly up-regulated in EGCG treated-cancer cell lines, when compared to that in untreated cancer cell lines. Our results have demonstrated that EGCG treatment induces anti-tumor effects more efficiently as noted by decreased cell proliferation, cell migration, telomerase activity, and increased $SA-{\beta}-gal$ activity than inducing anti-aging and anti-adipogenesis. Therefore, EGCG at a specific concentration can be considered for a potential anti-tumor drug.

Study for Possibility of N,N,N-Trimethylphytosphingosine (TMP) for Management of Chronic Skin Diseases (N,N,N-Trimethylphytosphingosine (TMP)의 염증성 피부질환 치료제 가능성에 관한 연구)

  • Seo, Won-Sang;Oh, Han-Na;Park, Woo-Jung;Um, Sang-Young;Kang, Sang-Mo
    • KSBB Journal
    • /
    • v.29 no.1
    • /
    • pp.36-41
    • /
    • 2014
  • Skin disease is one of the most common diseases and its incidence is increasing dramatically in modern society. Specially, many attempts have been made to treat chronic skin inflammation diseases, such as psoriasis and atopic dermatitis, but effective therapies for the immune cell-mediated skin diseases, including psoriasis and atopic dermatitis have not been developed. Until recently, several drug candidates which were claimed to be effective for skin diseases have been reported, but most of them are not used to treat chronic skin disease. Especially, Psoriasis is characterized by excessive growth and aberrant differentiation of keratinocytes, but is fully reversible with appropriate therapy. The trigger of the keratinocyte response is thought to be activation of the cellular immune system, with T cells and various immune-related cytokines. Formation of new blood vessels starts with early psoriatic changes and disappears with disease clearance. Several angiogenic mediators are up-regulated in psoriasis development. Contact- and mediator-dependent factors derived from keratinocytes, mast cells and immune cells may contribute to the strong blood vessel formation of psoriasis. New technologies and experimental models provide new insights into the role of angiogenesis in psoriasis pathogenesis. TMP and its derivatives themselves effectively inhibited in vitro cell migration, tube formation, and the expression of angiogenic factors. However, TMP and its derivatives induced side effects including hemolysis and local side effects. Therefore, in an attempt to reduce the toxicity and the undesirable side effects of TMP and derivatives, a liposomal formulation was prepared and tested for its effectiveness. TMP and derivatives liposomes retained the effectiveness of TMP in vitro while side effects were reduced. These results support the conclusion that TMP effectively inhibits in vitro angiogenesis, with the possibility that use as a psoriasis relief agent.

Enriching CCL3 in the Tumor Microenvironment Facilitates T cell Responses and Improves the Efficacy of Anti-PD-1 Therapy

  • Tae Gun Kang;Hyo Jin Park;Jihyun Moon;June Hyung Lee;Sang-Jun Ha
    • IMMUNE NETWORK
    • /
    • v.21 no.3
    • /
    • pp.23.1-23.16
    • /
    • 2021
  • Chemokines are key factors that influence the migration and maintenance of relevant immune cells into an infected tissue or a tumor microenvironment. Therefore, it is believed that the controlled administration of chemokines in the tumor microenvironment may be an effective immunotherapy against cancer. Previous studies have shown that CCL3, also known as macrophage inflammatory protein 1-alpha, facilitates the recruitment of dendritic cells (DCs) for the presentation of tumor Ags and promotes T cell activation. Here, we investigated the role of CCL3 in regulating the tumor microenvironment using a syngeneic mouse tumor model. We observed that MC38 tumors overexpressing CCL3 (CCL3-OE) showed rapid regression compared with the wild type MC38 tumors. Additionally, these CCL3-OE tumors showed an increase in the proliferative and functional tumor-infiltrating T cells. Furthermore, PD-1 immune checkpoint blockade accelerated tumor regression in the CCL3-OE tumor microenvironment. Next, we generated a modified CCL3 protein for pre-clinical use by fusing recombinant CCL3 (rCCL3) with a non-cytolytic hybrid Fc (HyFc). Administering a controlled dose of rCCL3-HyFc via subcutaneous injections near tumors was effective in tumor regression and improved survival along with activated myeloid cells and augmented T cell responses. Furthermore, combination therapy of rCCL3-HyFc with PD-1 blockade exhibited prominent effect to tumor regression. Collectively, our findings demonstrate that appropriate concentrations of CCL3 in the tumor microenvironment would be an effective adjuvant to promote anti-tumor immune responses, and suggest that administering a long-lasting form of CCL3 in combination with PD-1 blockers can have clinical applications in cancer immunotherapy.

Monocyte Chemoattractant Protein-1 (MCP-1)/CCL2 Induces the Chemotactic Activity of Human Eosinophils

  • Lee, Ji-Sook;Kim, In-Sik
    • Biomedical Science Letters
    • /
    • v.14 no.3
    • /
    • pp.199-201
    • /
    • 2008
  • Eosinophil is an improtant leukocyte in the development of various inflammatory diseases. Monocyte chemoattractant protein-1 (MCP-1) acts as a key regulator on monocyte movement, and activation of T cells and NK cells. However, the role of MCP-1 in eosinophils remains to be solved. In the present study, we examined the effect of MCP-1 on eosinophil migration, using human eosinophilic EoL-1 cells as an in vitro model of eosinophils. The surface expression of CCR2 in EoL-1 cells was little detected but MCP-1 strongly induced EoL-1 cell migration in a dose-dependent manner. Increased chemotactic activity due to MCP-1 was blocked by pertussis toxin, a $G_i/G_o$ protein inhibitor and U73122, a phospholipase C (PLC) inhibitor. These results suggest that MCP-1 activates $G_i/G_o$ protein and PLC and this signal pathway is involved in eosinphil movement. This finding supports the elucidation of pathogenic mechanism of eosinophilic inflammation such as asthma and atopic dermatitis.

  • PDF

Inhibitory Effect of Steviol and Its Derivatives on Cell Migration via Regulation of Tight Junction-related Protein Claudin 8 (스테비올 및 그 유도체의 세포연접 관련 클라우딘 8 발현 조절을 통한 세포이동 저해효과)

  • Choi, Sun Kyung;Cho, Nam Joon;Cho, Uk Min;Shim, Joong Hyun;Kim, Kee K.;Hwang, Hyung Seo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.4
    • /
    • pp.403-412
    • /
    • 2016
  • The tight junction, one of Intercellular junctions, performs a variety of biological functions by bonding adjacent cells, including the barrier function to control the movement of the electrolyte and water. Recent studies have revealed that unusual expression of tight junction-related genes have been shown to be related in cancer development and progression. Recently, there are many reports that control of tight junction proteins expression is closely related to the skin moisture. In this study, we are focusing on the regulating mechanism of tight junction-associated genes by the steviol and its derivatives. Steviol, used as a sweetner, is known to chemical compound isolated from stevia plant. The MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt) assay was carried out in HaCaT cells (human keratinocyte cell line) in order to determine the cytotoxicity. As a result, while steviol showing cytotoxicity from $250{\mu}M$, steviol derivatives are not cytotoxic more than $250{\mu}M$ concentration. We have observed a change in the tight junction protein via quantitative real-time PCR. Claudin 8 among tight junction proteins is only significantly reduced up to 30% in the presence of steviol. In addition, cell migration was inhibited by steviol, not by stevioside and rebaudioside. Finally, we could observe that steviol, not stevioside and rebaudioside, is able to increase the skin barrier permeability through the transepithelial electric resistance (TEER) measurements. These results suggest that the steviol and its derivatives are specifically acts on the tight junction related gene expression, but steviol derivatives are more suitable as a cosmetic material.

The Effects of 1,25- Dihydroxyvitamin $D_3$ on Expression of IGF-I Gene and Cellular Proliferation in MC3T3-E1 Cells (골아세포의 IGF-I 유전자 발현 및 세포증식에 대한 1,25-dihydroxyvitamin $D_3$의 영향)

  • Choi, Hee-Dong;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.1
    • /
    • pp.39-52
    • /
    • 2000
  • Polypeptide growth factor belong to a class of potent biologic mediator which regulate cell differentiation, proliferation, migration and metabolism. 1,25-dihydroxyvitamin $D_3$ decrease cell proliferation, and stimulate alkaline phosphatase activity which express in osteoblast during cell differentiation period. IGF-I is known to stimulate cell proliferation and differentiation too. 1,25-dihydroxyvitamin $D_3$ is known to increase IGF-I binding sites and IGF binding protein which inhibite the effect of IGF. The purpose of this study is to evaluate potential role of IGF-I as mediator that control the action of 1,25-dihydroxyvitamin $D_3$. MC3T3-E1 cell were seeded $5{\times}10^5/ml$ at 100mm culture plate in ${\alpha}-MEM$ containing 10% fetal bovine serum. After 48 hour incubation period, medium were changed ${\alpha}-MEM$ containing 5% fetal bovine serum. After 24 hours, $10^{-9}M$ 1,25-dihydroxyvitamin $D_3$ added. Total mRNA was extracted at 0, 6, 24, 48, 72 hour. PRPCR method was programed for the detection of IGF-I mRNA. In the both groups of 1,25-dihydroxy vitamin $D_3$ treated and control, alternative splicing form of IGF-I, IGF-IA and IGF-IB were expressed. In the 1,25-dihydroxyvitamin $D_3$ treated group, IGF-I mRNA expression was matained until 24 hour, there after expression was decresed. MC3T3-E1 cell were seeded $2.5{\times}10^4/ml$ at 24well plate in ${\alpha}-MEM$ containing 10% fetal bovine serum. After 48 hour incubation period, medium were changed ${\alpha}-MEM$ containing 3% fetal bovine serum. After 24 hours, $10^{-9}M$ 1,25-dihydroxyvitamin $D_3$ and 10 ng/ml IGF-I were added separately or together. Cell were cultured for 1 and 3 days, $2{\mu}Ci/ml\;[^3H]$ -thymidine was added for the last 24h of culture of each days. ${[^3H]}$-thymidine incorporation in to DNA was measured and expressed counter per minute(CPM). DNA synthetic activity was significantly decreased by 1,25-dihydroxyvitamin $D_3$ both at 1 day and 3 day, and in the combination group of 1,25-dihydroxyvitamin $D_3$ and IGF-I, DNA synthetic activity was also decreased both at 1 day and 3 days. IGF-I did not affect the DNA synthetic activity compared to control group both at 1 day and 3 day. From the above results, 1,25-dihydroxyvitamin $D_3$ was potent inhibitor of cell proliferaton in MC3T3-E1 cells. It assumed that the effect of 1,25-dihydroxyvitamin $D_3$ on osteoblast proliferation may be mediated in part by decreased level of IGF-I.

  • PDF