DOI QR코드

DOI QR Code

Inhibitory Effect of Steviol and Its Derivatives on Cell Migration via Regulation of Tight Junction-related Protein Claudin 8

스테비올 및 그 유도체의 세포연접 관련 클라우딘 8 발현 조절을 통한 세포이동 저해효과

  • Choi, Sun Kyung (Department of Biochemistry, Chungnam National University) ;
  • Cho, Nam Joon (Department of Biochemistry, Chungnam National University) ;
  • Cho, Uk Min (Department of Oriental Cosmetic Science, Semyung University) ;
  • Shim, Joong Hyun (Department of Oriental Cosmetic Science, Semyung University) ;
  • Kim, Kee K. (Department of Biochemistry, Chungnam National University) ;
  • Hwang, Hyung Seo (Department of Oriental Cosmetic Science, Semyung University)
  • 최선경 (충남대학교 생화학과) ;
  • 조남준 (충남대학교 생화학과) ;
  • 조욱민 (세명대학교 한방화장품과학과) ;
  • 심중현 (세명대학교 한방화장품과학과) ;
  • 김기광 (충남대학교 생화학과) ;
  • 황형서 (세명대학교 한방화장품과학과)
  • Received : 2016.11.16
  • Accepted : 2016.12.20
  • Published : 2016.12.30

Abstract

The tight junction, one of Intercellular junctions, performs a variety of biological functions by bonding adjacent cells, including the barrier function to control the movement of the electrolyte and water. Recent studies have revealed that unusual expression of tight junction-related genes have been shown to be related in cancer development and progression. Recently, there are many reports that control of tight junction proteins expression is closely related to the skin moisture. In this study, we are focusing on the regulating mechanism of tight junction-associated genes by the steviol and its derivatives. Steviol, used as a sweetner, is known to chemical compound isolated from stevia plant. The MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt) assay was carried out in HaCaT cells (human keratinocyte cell line) in order to determine the cytotoxicity. As a result, while steviol showing cytotoxicity from $250{\mu}M$, steviol derivatives are not cytotoxic more than $250{\mu}M$ concentration. We have observed a change in the tight junction protein via quantitative real-time PCR. Claudin 8 among tight junction proteins is only significantly reduced up to 30% in the presence of steviol. In addition, cell migration was inhibited by steviol, not by stevioside and rebaudioside. Finally, we could observe that steviol, not stevioside and rebaudioside, is able to increase the skin barrier permeability through the transepithelial electric resistance (TEER) measurements. These results suggest that the steviol and its derivatives are specifically acts on the tight junction related gene expression, but steviol derivatives are more suitable as a cosmetic material.

밀착연접(tight junction, TJ)은 인접하는 표피 세포 사이를 서로 연결 및 접합하여 전해질과 수분의 이동을 조절할 뿐만 아니라 세포 내 신호를 전달하고 세포분열을 조절하는 등 다양한 기능을 갖고 있는 것으로 알려졌다. 또한 최근 연구에 따르면 TJ 관련 단백질들의 비정상적 발현은 암 발생 및 진행과 밀접한 관련이 있는 것으로 보고되었으며, TJ 구성 단백질의 발현 조절은 피부 장벽 강화 및 보습 조절과 연관된 것으로 알려졌다. 본 연구에서는 세포 장벽 조절을 통해 피부 보습 조절에 관여하는 새로운 화장품 소재를 발굴하기 위해 여러가지 소재들에 대한 스크리닝을 수행하였다. 이 중 인공 감미료 소재로 널리 사용되는 스테비올 및 당 유도체(스테비오사이드)의 미백 및 주름 개선 등의 효능에 대한 기존 보고에 따라, 이들에 의한 TJ 조절 메커니즘을 확인하기 위해 다양한 세포 활성 기능 시험을 수행하였다. MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt)를 이용한 실험을 통하여 스테비올은 human keratinocyte cell line인 HaCaT 세포에 $250{\mu}M$ 까지 독성을 나타내지 않음을 확인하였다. Quantitative real-time PCR을 이용한 TJ 관련 단백질들의 mRNA 발현 변화를 통하여 스테비올에 의한 TJ 조절 기능을 확인하였다. 그 결과, 스테비올은 TJ 관련 단백질 중 특이적으로 claudin 8을 대조군 대비 30% 수준까지 감소시키는 것을 관찰하였다. 또한, 세포이동에 의한 영향을 관찰한 결과 스테비올 처리에 의해 세포이동이 현저히 저해되는 것을 확인하였다. 마지막으로 세포 장벽의 투과성 변화를 관찰하기 위해 표피세포 피부저항(transepithelial electric resistance, TEER) 분석 결과 스테비올에 의한 세포투과성(cell permeability) 또한 증가되는 것을 관찰하였다. 이에 반해, 스테비올 유도체(스테비오사이드, 리바우디오사이드)에서는 $1000{\mu}M$까지 세포 독성이 거의 나타나지 않을 뿐만 아니라 claudin 8 발현 억제 및 세포이동 저해현상도 관찰되지 않았다. 스테비올은 HaCaT 세포의 세포 독성, claudin 8 발현 억제, 그리고 세포 이동의 저해효과를 보이는 반면 스테비올 당 유도체인 스테비오사이드, 리바우디오사이드는 세포 독성 및 세포이동에 영향이 없는 것으로 나타난 본 연구 결과들은 스테비올 당 유도체가 향후 화장품 원료로써 스테비올보다 적합한 소재임을 시사한다.

Keywords

References

  1. J. R. Hanson and B. H. De Oliverira, Stevioside and related sweet diterpenoid glycosides, Nat. Prod. Prp., 10(3), 301 (1993).
  2. H. Oh, E. Han, D. Choi, J. Kim, M. Eom, I. Kang, H. Kang, and K. Ha, In vitro and in vivo evaluation of genotoxicity of stevioside and steviol, natural sweetner, J. Pharm. Soc. of Korea, 43, 614 (1999).
  3. Korea, PCT/KR2013/008636 (2012).
  4. M. Ukiya, S. Sawada, T. Kikuchi, Y. Kushi, M. Fukatsu, and T. Akihisa, Cytotoxic and apoptosis-inducing activities of steviol and isosteviol derivatives against human cancer cell lines, Chem. Biodivers., 10(2), 177 (2013). https://doi.org/10.1002/cbdv.201200406
  5. D. Brusick, A critical review of the genetic toxicity of steviol and steviol glycosides, Food Chem. Toxicol., 46(7), 177 (2008).
  6. F. Bonte, Skin moisturization mechanisms: new data, Ann. Pharm. Fr., 69(3), 135 (2011). https://doi.org/10.1016/j.pharma.2011.01.004
  7. R. Ghadially, B. Brown, S. Sequeira-Martin, K. Feingold, and P. Elias, The aged epidermal permeability barrier. Structural, functional, and lipid biochemical abnormalities in humans and a senescent murine model, J. Clin. Invest., 95(5), 2281 (1995). https://doi.org/10.1172/JCI117919
  8. S. H. Lee, D. J. Min, Y. J. Na, J. W. Shim, L. K. Kwon, J. C. Cho, and H. K. Lee, The protective effect of mineral water against UVB irradiation, J. Soc. Cosmet. Sci. Korea, 39(1), 39 (2013). https://doi.org/10.15230/SCSK.2013.39.1.039
  9. M. Cereijido and J. M. Anderson, Tight junctions, Crc Press, New York Washington, D.C. (2001).
  10. K. Morita and Y. Miyachi, Tight junctions in the skin, J. Dermatol. Sci., 31(2), 81 (2003). https://doi.org/10.1016/S0923-1811(03)00038-0
  11. E. Schneeberger and R. Lynch, The tight junction: a multifunctional complex, Am. J. physiol. Cell Physiol., 286(6), 1213 (2004). https://doi.org/10.1152/ajpcell.00558.2003
  12. L. Gonzalez, A. Betanzos, P. Nava, and B. Jaramillo, Tight junction proteins, Prog. Biophys. Mol. Bio., 81(1), 1 (2003). https://doi.org/10.1016/S0079-6107(02)00037-8
  13. L. Lapierre, The molecular structure of the tight junction, Adv. Drug Deliv. Rev., 41(3), 255 (2000). https://doi.org/10.1016/S0169-409X(00)00045-4
  14. S. Tsukita, M. Furuse, and M. Itoh, Multifunctional strands in tight junctions, Nat. Rev. Mol. Cell Biol., 2(4), 285 (2001). https://doi.org/10.1038/35067088
  15. H. Y. Yu, I. J. Yang, V. R. Lincha, I. S. Park, D. U. Lee, and H. M. Shin, The effect of the fruits of Foeniculum vulgare on skin barrier function and hyaluronic acid production in HaCaT keratinocytes, J. Life Sci., 25(8), 880 (2015). https://doi.org/10.5352/JLS.2015.25.8.880
  16. M. S. Kwon and T. B. Choi, The effect on the skin barrier function of ceramide, Korean Journal of Aesthetic Society, 3(1), 131 (2005).
  17. E. Dejana, Endothelial cell-cell junctions: happy together, Nat. Rev. Mol. Cell Biol., 5(4), 261 (2004). https://doi.org/10.1038/nrm1357
  18. H. Chiba, M. Osanai, M. Murata, T. Kojima, and N. Sawada, Transmembrane proteins of tight junctions, Biochim. Biophys. Acta Biomembr., 1778(3), 588 (2008). https://doi.org/10.1016/j.bbamem.2007.08.017
  19. M. Katoh, Epithelial-mesenchymal transition in gastric cancer (review), Int. J. Oncol., 27(60), 1677 (2005).
  20. J. A. Tunggal, I. Helfrich, A. Schmitz, H. Schwarz, D. Gunzel, M. Fromm, and C. M. Niessen, E-cadherin is essential for in vivo epidermal barrier function by regulating tight junctions, EMBO J., 24(6), 1146 (2005). https://doi.org/10.1038/sj.emboj.7600605
  21. A. S. Wong and B. M. Gumbiner, Adhesion-independent mechanism for suppression of tumor cell invasion by E-cadherin, J. Cell Biol., 161(6), 1191 (2003). https://doi.org/10.1083/jcb.200212033
  22. K. Yokoyama, N. Kamata, E. Hayashi, T. Hoteiya, N. Ueda, R. Fujimoto, and M. Nagayama, Reverse correlation of E-cadherin and snail expression in oral squamous cell carcinoma cells in vitro, Oral Oncol., 37(1), 65 (2001). https://doi.org/10.1016/S1368-8375(00)00059-2
  23. J. Xu, Y. Yang, P. Hao, and X. Ding, Claudin 8 contributes to malignant proliferation in human osteosarcoma U2OS cells, Cancer Biother. Radiopharm., 30(9), 400 (2015). https://doi.org/10.1089/cbr.2015.1815
  24. W. Akihiro, H. Maki, Y. Kiyohito, and K. Masuo, Checkpoint kinase 1 activation enhances intestinal epithelial barrier function via regulation of claudin-5 expression, PloS one, 11(1), e0145631 (2016). https://doi.org/10.1371/journal.pone.0145631
  25. S. L. Kominsky, P. Argani, D. Korz, E. Evron, V. Raman, E. Garrett, and S. Sukumar, Loss of the tight junction protein claudin-7 correlates with histological grade in both ductal carcinoma in situ and invasive ductal carcinoma of the breast, Oncogene, 22(13), 2021 (2003). https://doi.org/10.1038/sj.onc.1206199
  26. P. J. Morin, Claudin proteins in human cancer: promising new targets for diagnosis and therapy, Cancer Res., 65(21), 9603 (2005). https://doi.org/10.1158/0008-5472.CAN-05-2782
  27. A. M. Tokes, J. Kulka, S. Paku, A. Szik, C. Paska, P. K. Novak, and Z. Schaff, Claudin-1,-3 and-4 proteins and mRNA expression in benign and malignant breast lesions: a research study, Breast Cancer Res., 7(2), 1 (2005).
  28. J. Zhu, R. Wang, H. Cao, H. Zhang, S. Xu, A. Wang, and R. Wang, Expression of claudin-5,-7,-8 and-9 in cervical carcinoma tissues and adjacent non-neoplastic tissues, Int. J. Clin. Exp. Pathol., 8(8), 9479 (2015).
  29. P. G. Webb, M. A. Spillman, and H. K. Baumgartner, Claudins play a role in normal and tumor cell motility, BMC Cell Biol., 14(1), 1 (2013). https://doi.org/10.1186/1471-2121-14-1
  30. A. Shiozaki, H. Shimizu, D. Ichikawa, H. Konishi, S. Komatsu, T. Kubota, H. Fujiwara, K. Okamoto, D. Iitaka, S. Nakashima, Y. Nako, M. Liu, and E. Otsuji, Claudin 1 mediates tumor necrosis factor alpha-induced cell migration in human gastric cancer cells, World J. Gastroenterol., 20(47), 17863 (2014). https://doi.org/10.3748/wjg.v20.i47.17863
  31. K. H. Ling, L. Y. W. Murphy, E. N. Hani, and W. Mingfu, Protective capacity of resveratrol, a natural polyphenolic compound, against deoxynivalenol-induced intestinal barrier dysfunction and bacterial translocation, Chem. Res. Toxicol., 29(5), 823 (2016). https://doi.org/10.1021/acs.chemrestox.6b00001
  32. C. Zihni, C. Mills, K. Matter, and M. S. Balda, Tight juction: from simple barriers to multifunctional molecular gates, Nat. Rev. Mol. Cell Biol., 17, 564 (2016). https://doi.org/10.1038/nrm.2016.80
  33. A. Hartsock and W. J. Nelson, Adherens and tight junctions: structure, function and connections to the actin cytoskeleton, Biochim. Biophys. Acta Biomembr., 1778(3), 660 (2008). https://doi.org/10.1016/j.bbamem.2007.07.012
  34. M. J. Kwon, Emerging roles of claudins in human cancer, International journal of molecular sciences, 14(9), 18148 (2013). https://doi.org/10.3390/ijms140918148