• Title/Summary/Keyword: Systems model

검색결과 23,847건 처리시간 0.053초

전시장 참관객의 계획되지 않은 방문행동에 있어서 부스추천시스템의 영향에 대한 연구 (A Study on the Effect of Booth Recommendation System on Exhibition Visitors Unplanned Visit Behavior)

  • 정남호;김재경
    • 지능정보연구
    • /
    • 제17권4호
    • /
    • pp.175-191
    • /
    • 2011
  • 국가신성장동력으로MICE(Meeting, Incentive travel, Convention, Exhibition) 산업이각광받으면서국내전시산업에 대한 관심이 드높아 지고 있다. 이에 따라 국내 전시산업(domestic exhibition industry)도 미국이나 유럽과 같이 전시성과를 향상시키기 위한 다양한 연구가 진행 중이다. 그 중에서도 전시환경이나 전시기법 등에 따라 관람효과가 다르기 때문에 지능형 정보기술을 이용하여 전시장에 방문한 참관객의 참관패턴을 분석하여 참관객을 이해하고 더 나아가 참여업체 간의 연관관계 도출 및 전시회의 성과를 높이고자 하는 연구들이 진행되고 있다. 그런데, 이러한 기존의 부스추천시스템과 관련된 연구를 살펴보면 시스템적인 관점에서 추천의 정확성만을 논하고 있을 뿐 추천을 통한 참관객의 행동이나 인식의 변화에 대해서는 충분히 논의하고 있지 못하다. 부스추천시스템(Booth Recommendation System)은 참관객의 부스방문 정보를 바탕으로 참관객에게 적절한 부스를 추천하기 때문에 참관객은 사전에 계획하지 않은 전시장을 방문하게 될 수 있다. 이 때 참관객은 계획하지 않은 방문행동을 통해서 만족할 수도 있지만 추천과 정이 번거롭다거나 자유롭게 참관을 하는데 방해가 된다고 생각할 수 있다. 이 경우 참관객의 자유로운 관람보다 오히려 더 좋지 않은 성과를 낼 수 있다. 따라서 부스 추천시스템을 전시장에 적용하기 위해서는 시스템의 성과에 미치는 영향요인이 무엇인지 전반적으로 검토하고, 부스추천시스템이 참관객의 계획되지 않은 방문행동에 미치는 영향에 대해 면밀히 검토해야 한다. 이에 본 연구에서는 부스추천시스템의 성과에 영향을 미치는 요인이 무엇인지 이론과 기존문헌을 통해 살펴보고자 하였다. 또한, 참관객의 지각된 부스추천시스템의 성과가 참관객의 계획되지 않은 행동에 대한 만족도와 부스추천시스템의 재사용의도에 어떤 영향을 미치는지 살펴보고자 하였다. 이러한 연구목적을 달성하기 위한 이론적 프레임워크로 본 연구는 계획되지 않은 행동이론(Unplanned Behavior Theory)을 도입하였다. 계획되지 않은 행동(unplanned behavior)이란 "소비자들이 사전에 계획하지 되지 않은 채 실행된 어떤 행동"으로 정의할 수 있다. 소비자들의 계획되지 않은 행동은 그 동안 마케팅 등 다양한 분야에서 연구되어 왔다. 특히, 마케팅에서는 계획되지 않은 행동 중 계획되지 않은 구매(unplanned purchasing)에 많은 관심을 두어 왔는데 이 개념은 종종 충동적 구매(impulsive purchasing)와 혼동되어 사용되곤 하였다. 그런데, 충동적 구매가 갑자기 무엇인가 구매를 해야하는 강하고 지속적인 충동(urge)이라고 본다면 계획되지 않은 구매는 구매의사결정의 시점이 상점에 들어가기 전이 아닌 상점 내에서 수행된다는 점이 다르다. 즉, 모든 충동적 구매는 비계획적이나, 모든 계획되지 않은 구매가 충동적인 구매는 아니다. 그런데, 왜 소비자들은 계획되지 않은 행동을 하는가? 이에 대해서는 학자들에 따라 여러 가지 의견이 있으나 소비자가 사전에 철저한 계획을 수립하지 않고 따라서 중간에 계획을 변화시킬만한 유연성(flexibility)이 있기 때문이라는 점에 일관된 의견을 보인다. 즉, 계획되지 않은 행동을 하는데 많은 비용이 소요된다면 소비자들은 사전에 수립한 계획을 변경하기 어렵게 될 것이기 때문이다. 본 연구에서 살펴보고자 하는 전시장 역시 참관객들은 방문하기 전에 전시장이 어떤 프로그램으로 구성되어 있는지 살펴보고, 어떤 부스를 방문할지를 사전에 계획하게 된다. 그 이유는 참관객들이 전시장 방문에 투입할 수 있는 시간은 한정되어 있는 반면에 전시회는 대규모의 다양한 부스로 운영되기 때문에 참관객들이 모든 부스를 참관한다는 것이 현실적으로 불가능하기 때문이다. 따라서 본 연구에서 제시하는 부스추천시스템이 참관객이 선호할 만한 부스를 추천하게 되면 참관객은 자신의 계획을 변화시켜서 부스추천시스템이 추천한 부스를 방문하게 된다. 이러한 방문행동은 소비자가 상점을 방문하거나, 관광객이 관광지에서 계획하지 않은 행동을 하는 것과 유사한 측면에서 이해가 가능하며 특히 최근 여행소비자들이 정보기기의 영향으로 계획되지 않은 행동을 하는 경우가 부쩍 증가한 추세와 동일한 맥락에서 이해가 가능하다. 이에 다음과 같은 연구모형을 설정하였다. 이 연구모형은 참관객이 지각한 부스추천시스템의 성과(performance)를 매개변수로 하고 있는데 이 성과에 영향을 미치는 요인으로 부스추천시스템에 대한 신뢰(trust), 전시장 참관객의 지식수준 (knowledge level), 부스 추천시스템의 기대된 개인화 (expected personalization) 그리고 부스추천시스템의 자유위협(threat to freedom)을 영향요인으로 파악하였다. 또한, 지각된 부스추천시스템 성과와 계획되지 않은 행동에 대한 참관객의 만족도와 향후 부스추천시스템의 재사용의도간의 인과관계도 파악하고자 하였다. 이 때 부스추천시스템에대한신뢰는권한(competence), 자선(benevolence), 그리고진실(integrity)의2차요인(2nd order factor)으로구성하고, 나머지 요인들은 1차 요인으로 구성하였다. 이를 검증하기 위해 2011 DMC Culture Open 행사에서 부스추천시스템을 테스트하기 위하여 시스템을 개발하고, 101명의 참관객을 대상으로 실증조사를 하여 분석하였다. 분석결과 첫째, 부스추천시스템에 있어서 참관객의 신뢰가 가장 중요한 요소이며 실제 해당 부스추천시스템을 이용한 참관객들은 신뢰를 통해 부스추천시스템이 성과 있다고 인식하였다. 둘째, 참관객의 지식수준 역시 부스추천시스템의 성과에 유의한 영향을 미쳤는데 이는 추천의 성과가 전시장에 대한 사전적 이해가 필요함을 의미한다. 즉, 전시장에 대한 이해가 높은 참관객이 부스추천시스템의 유용성을 더 잘 파악하는 것으로 나타났다. 셋째, 기대된 개인화 수준은 성과에 유의한 영향을 미치지 못했는데 이는 기존 연구와 다른 결과로 본 연구에 사용된 부스추천시스템이 충분히 개인화 서비스를 제공하지 못했기 때문이라고 판단된다. 넷째, 부스추천시스템의 추천정보는 개인의 자유를 위협하거나 제한한다고 느끼지 않음으로 충분히 유용한 가치를 갖는다고 할 수 있다. 끝으로 부스정보시스템의 높은 성과는 참관객들의 계획되지 않은 행동에 대한 높은 만족도와 향후에도 부스추천시스템을 재사용할 의도를 만드는 것으로 나타났다. 이와 같이 본 연구는 부스추천시스템이 야기하는 참관객의 계획되지 않은 부스방문행동에 미치는 영향력을 분석하기 위해 계획되지 않은 행동이론을 중심으로 실증자료를 이용하여 분석하고, 이를 통해 향후 부스추천시스템의 구축 및 설계에 유용한 시사점을 도출할 수 있었다. 향후에는 보다 정교한 설문구성과 측정대상을 이용하여 추가적인 검토가 필요할 것으로 기대된다.

Hierarchical Attention Network를 이용한 복합 장애 발생 예측 시스템 개발 (Development of a complex failure prediction system using Hierarchical Attention Network)

  • 박영찬;안상준;김민태;김우주
    • 지능정보연구
    • /
    • 제26권4호
    • /
    • pp.127-148
    • /
    • 2020
  • 데이터 센터는 컴퓨터 시스템과 관련 구성요소를 수용하기 위한 물리적 환경시설로, 빅데이터, 인공지능 스마트 공장, 웨어러블, 스마트 홈 등 차세대 핵심 산업의 필수 기반기술이다. 특히, 클라우드 컴퓨팅의 성장으로 데이터 센터 인프라의 비례적 확장은 불가피하다. 이러한 데이터 센터 설비의 상태를 모니터링하는 것은 시스템을 유지, 관리하고 장애를 예방하기 위한 방법이다. 설비를 구성하는 일부 요소에 장애가 발생하는 경우 해당 장비뿐 아니라 연결된 다른 장비에도 영향을 미칠 수 있으며, 막대한 손해를 초래할 수 있다. 특히, IT 시설은 상호의존성에 의해 불규칙하고 원인을 알기 어렵다. 데이터 센터 내 장애를 예측하는 선행연구에서는, 장치들이 혼재된 상황임을 가정하지 않고 단일 서버를 단일 상태로 보고 장애를 예측했다. 이에 본 연구에서는, 서버 내부에서 발생하는 장애(Outage A)와 서버 외부에서 발생하는 장애(Outage B)로 데이터 센터 장애를 구분하고, 서버 내에서 발생하는 복합적인 장애 분석에 중점을 두었다. 서버 외부 장애는 전력, 냉각, 사용자 실수 등인데, 이와 같은 장애는 데이터 센터 설비 구축 초기 단계에서 예방이 가능했기 때문에 다양한 솔루션이 개발되고 있는 상황이다. 반면 서버 내 발생하는 장애는 원인 규명이 어려워 아직까지 적절한 예방이 이뤄지지 못하고 있다. 특히 서버 장애가 단일적으로 발생하지 않고, 다른 서버 장애의 원인이 되기도 하고, 다른 서버부터 장애의 원인이 되는 무언가를 받기도 하는 이유다. 즉, 기존 연구들은 서버들 간 영향을 주지 않는 단일 서버인 상태로 가정하고 장애를 분석했다면, 본 연구에서는 서버들 간 영향을 준다고 가정하고 장애 발생 상태를 분석했다. 데이터 센터 내 복합 장애 상황을 정의하기 위해, 데이터 센터 내 존재하는 각 장비별로 장애가 발생한 장애 이력 데이터를 활용했다. 본 연구에서 고려되는 장애는 Network Node Down, Server Down, Windows Activation Services Down, Database Management System Service Down으로 크게 4가지이다. 각 장비별로 발생되는 장애들을 시간 순으로 정렬하고, 특정 장비에서 장애가 발생하였을 때, 발생 시점으로부터 5분 내 특정 장비에서 장애가 발생하였다면 이를 동시에 장애가 발생하였다고 정의하였다. 이렇게 동시에 장애가 발생한 장비들에 대해서 Sequence를 구성한 후, 구성한 Sequence 내에서 동시에 자주 발생하는 장비 5개를 선정하였고, 선정된 장비들이 동시에 장애가 발생된 경우를 시각화를 통해 확인하였다. 장애 분석을 위해 수집된 서버 리소스 정보는 시계열 단위이며 흐름성을 가진다는 점에서 이전 상태를 통해 다음 상태를 예측할 수 있는 딥러닝 알고리즘인 LSTM(Long Short-term Memory)을 사용했다. 또한 단일 서버와 달리 복합장애는 서버별로 장애 발생에 끼치는 수준이 다르다는 점을 감안하여 Hierarchical Attention Network 딥러닝 모델 구조를 활용했다. 본 알고리즘은 장애에 끼치는 영향이 클 수록 해당 서버에 가중치를 주어 예측 정확도를 높이는 방법이다. 연구는 장애유형을 정의하고 분석 대상을 선정하는 것으로 시작하여, 첫 번째 실험에서는 동일한 수집 데이터에 대해 단일 서버 상태와 복합 서버 상태로 가정하고 비교분석하였다. 두 번째 실험은 서버의 임계치를 각각 최적화 하여 복합 서버 상태일 때의 예측 정확도를 향상시켰다. 단일 서버와 다중 서버로 각각 가정한 첫 번째 실험에서 단일 서버로 가정한 경우 실제 장애가 발생했음에도 불구하고 5개 서버 중 3개의 서버에서는 장애가 발생하지 않은것으로 예측했다. 그러나 다중 서버로 가정했을때에는 5개 서버 모두 장애가 발생한 것으로 예측했다. 실험 결과 서버 간 영향이 있을 것이라고 추측한 가설이 입증된 것이다. 연구결과 단일 서버로 가정했을 때 보다 다중 서버로 가정했을 때 예측 성능이 우수함을 확인했다. 특히 서버별 영향이 다를것으로 가정하고 Hierarchical Attention Network 알고리즘을 적용한 것이 분석 효과를 향상시키는 역할을 했다. 또한 각 서버마다 다른 임계치를 적용함으로써 예측 정확도를 향상시킬 수 있었다. 본 연구는 원인 규명이 어려운 장애를 과거 데이터를 통해 예측 가능하게 함을 보였고, 데이터 센터의 서버 내에서 발생하는 장애를 예측할 수 있는 모델을 제시했다. 본 연구결과를 활용하여 장애 발생을 사전에 방지할 수 있을 것으로 기대된다.

다른 연결 시스템을 갖는 임플랜트 상부 구조물에서 조임술식에 따른 지대주 나사의 풀림 토크값에 대한 연구 (Removal Torque Values of Retaining Screws Tightened to Implant-Supported Prosthesis with Different Connection Systems by Various Tightening Technique)

  • 김동욱;최유성;조인호
    • 구강회복응용과학지
    • /
    • 제27권4호
    • /
    • pp.343-358
    • /
    • 2011
  • 임플랜트 치료가 보편화되고, 다양한 형태와 재료의 상부 구조물이 보급되었다. 그리고 실패에 대한 보고도 다양하며, 그 중 지대나사의 풀림현상이 가장 흔하다고 지적되고 있다. 본 연구는 외부연결구조와 내부연결구조 임플랜트에 의해 지지되는 상부 구조물을 나사로 연결할 때, 세 가지 나사조임순서와 두 가지 나사조임방법에 따른 나사의 풀림 토크값을 비교하여 나사조임순서와 나사조임방법이 서로 다른 연결구조에 따라 나사풀림현상에 미치는 영향을 알아보고자 하였다. 완전 무치악 하악모형을 자가중합형 아크릴릭 레진으로 제작하고 이공간 부위에 중심간 거리가 약 15 mm 되도록 네 개의 임플랜트 고정체 유사체를 고정한 후 바 타입으로 납형 형성하여 상부 구조물을 주조 제작하였다. 상부 구조물과 정확한 적합이 되는 주모형을 제작한 후 연결 인상법으로 외부연결구조, 내부연결구조를 가지는 연구모형을 각각 5개씩 제작하였다. 각 모형에서 각 나사의 풀림 토크값을 가장 왼쪽에 조여지는 나사를 1번 나사로 하고 가장 오른쪽의 나사를 4번 나사로 명명하였다. 먼저, 나사조임순서의 영향을 알아보기 위해 1-2-3-4, 2-3-1-4, 2-4-3-1의 순서로 15 Ncm의 힘으로 조이고, 다시 같은 순서로 최종 조임토크값인 30 Ncm까지 조인 후 (2-step 방법) 각 나사의 풀림 토크값을 측정하였다. 또한 나사조임방법의 영향을 알아보기 위해 2-3-1-4의 순서로 한 번에 최종 조임토크값인 30 Ncm까지 조인 후 (1-step 방법) 각 나사의 풀림 토크값을 측정하여 같은 순서 (2-3-1-4)의 2-step 방법과 비교하였다. 세 가지 나사조임순서에 따른 나사의 풀림 토크값은 외부연결구조에서 2-3-1-4군이 2-4-3-1군보다 유의하게 낮았다 (p<0.05). 그리고 내부연결구조에서도 2-3-1-4군이 2-4-3-1군과 1-2-3-4군보다 유의하게 낮았다 (p<0.05). 또한 나사조임순서와 무관하게 몇 번째 조여진 나사인지에 따른 풀림 토크값을 비교해 본 결과, 외부연결구조에서는 처음에 조여진 나사가 두 번째 조여진 나사보다 유의하게 높았으나 (p<0.05), 내부연결구조에서는 처음에 조여진 나사에서부터 마지막에 조여진 나사 간에 차이가 없었다. 그리고 두 가지 나사조임방법 간에는 외부연결구조와 내부연결구조 모두에서 통계학적으로 유의한 차이가 없었다. 연결구조에 대한 비교에서 외부연결구조와 내부연결구조의 풀림 토크값은 각각 16.27 Ncm, 14.25 Ncm 였으며, 통계적으로 유의한 차이가 나타났다 (p<0.05). 다수 임플랜트에 의해 지지되는 상부 구조물을 나사로 연결할 때, 나사조임순서에 따라 차이가 있었으며, 가운데부터 조인 경우에서 풀림 토크값이 낮았고, 연결구조 간에도 차이가 있었다. 풀림 토크값에 미치는 요인에 대해 좀 더 상세히 분석할 필요가 있으며, 하중 조건에서의 부가적인 연구가 필요할 것으로 사료된다.

사고가 시각을 바꾼다: 조절 초점에 따른 소비자 감성 기반 웹 스타일 평가 모형 및 추천 알고리즘 개발 (Individual Thinking Style leads its Emotional Perception: Development of Web-style Design Evaluation Model and Recommendation Algorithm Depending on Consumer Regulatory Focus)

  • 김건우;박도형
    • 지능정보연구
    • /
    • 제24권4호
    • /
    • pp.171-196
    • /
    • 2018
  • 본 연구는 디자인 영역 중 웹 스타일에 대해서 소비자 감성과 만족과의 관계를 연구했다. 기존 웹 스타일 연구들은 웹의 레이아웃과 구조도 등과 색상 등이 감성에 미치는 영향에서 연구했다. 본 연구는 기존 연구들과 차별되게 웹의 구성 요소를 배제하고 소비자의 감성 지표만을 갖고 소비자 만족과의 관계를 분석했다. 분석을 위해 검증을 위해 소비자 204명을 대상으로 40개 웹 스타일 테마를 선정, 각 소비자에게 4개씩 평가하도록 하였다. 소비자에게 평가하도록 한 감성 형용사는 18개의 대비되는 쌍을 갖는 감성 형용사로 구성하였고, 요인 분석을 통해 상위 감성 지표를 추출했다. 각 감성 지표들은 '부드러움', '모던함', '명확함', '꽉 참' 이었으며, 감성지표들이 소비자 만족에 미치는 영향이 다를 것으로 판단하여 가설을 수립했다. 분석 결과에 따라 가설 1과 2, 3은 채택되었으며, 가설 4의 경우는 기각되었다. 가설 4의 경우 기각되었지만 정의 방향이 아닌 부의 방향으로 유의한 것으로 나타났다. 이때, 조절 초점 성향이 감성이라는 정보처리 과정에서 소비자 만족에 미치는 영향이 다를 것으로 판단했다. 조절 초점 성향은 조직 행동 및 의사결정에 영향을 주기도 하며, 정치, 문화, 윤리적 판단 및 행동은 물론 광범위적 심리적 문제와 사고 프로세스, 감정적 반응에도 영향을 미친다. 때문에 각 감성 지표에 대한 조절 초점 간 차이를 확인할 필요성이 있고, 각 감성 지표에 대한 세부 가설을 수립했다. 세부 가설을 검증하기 위해 조절 회귀 분석을 수행했다. 분석 결과 가설 5는 부분적으로 지지됐고, 가설 5.3만 지지되었고, 5.4의 경우 기각되었지만 가설과의 반대 방향으로 지지되었다. '명확함'의 경우 향상 초점이 소비자 만족에 더 큰 영향을 보였고, 예방 초점일수록 '꽉 참'을 더 선호한 것으로 나타났다. 분석 결과를 바탕으로 조절 초점 성향을 향상, 예방, 중간 성향으로 3집단으로 구분, 소비자 감성 기반으로 웹 스타일에 대한 추천을 할 수 있는 알고리즘을 개발했다.

지능형 검색엔진을 위한 색상 질의 처리 방안 (Color-related Query Processing for Intelligent E-Commerce Search)

  • 홍정아;구교정;차지원;서아정;여운영;김종우
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.109-125
    • /
    • 2019
  • 지능형 전자상거래 검색 엔진에 대한 관심이 커지면서, 검색 상품의 특징을 지능적으로 추출하고 활용하기 위한 연구들이 수행되고 있다. 특히 전자상거래 지능형 검색 엔진에서 상품을 검색 할 때, 제품의 색상은 상품을 묘사하는 중요한 특징 중에 하나이다. 따라서 사용자의 질의에 정확한 응답을 위해서는 사용자가 검색하려는 색상과 그 색상의 동의어 및 유의어에 대한 처리가 필요하다. 기존의 연구들은 색상 특징에 대한 동의어 처리를 주로 사전 방식으로 다뤄왔다. 하지만 이러한 사전방식으로는 사전에 등록되지 않은 색상 용어가 질의에 포함된 경우 처리하지 못하는 한계점을 가지고 있다. 본 연구에서는 기존에 사용하던 방식의 한계점을 극복하기 위하여, 실시간으로 인터넷 검색 엔진을 통해 해당 색상의 RGB 값을 추출한 후 추출된 색상정보를 기반으로 유사한 색상명들을 출력하는 모델을 제안한다. 본 모델은 우선적으로 기본적인 색상 검색을 위해 671개의 색상명과 각 RGB값이 저장된 색상 사전을 구축하였다. 본 연구에서 제시한 모델은 특정 색상을 검색하는 것으로 시작하며, 검색된 색상이 색상 사전 내 존재하는 지 유무를 확인한다. 사전 내에 검색한 색상이 존재한다면, 해당 색상의 RGB 값이 기준 값으로 사용된다. 만일 색상사전 내에 존재하지 않는다면, Google 이미지 검색 결과를 크롤링하여 각 이미지의 특정 영역 내 RGB값들을 군집화하여 구한 평균 RGB값을 검색한 색상의 기준 값으로 한다. 기준 RGB값을 앞서 구축한 색상 사전 내의 모든 색상의 RGB 값들과 비교하여 각 R, G, B 값에 있어서 ${\pm}50$ 내의 색상 목록을 정렬하고, RGB값 간의 유클리디안 거리 유사도를 활용하여 최종적으로 유사한 색 상명들을 출력한다. 제안 방안의 유용성을 평가하기 위해 실험을 진행하였다. 피설문자들이 생각하는 300 개의 색상 이름과 해당 색상 값을 얻어, 본 연구에서 제안한 방안을 포함한 총 네가지 방법을 통해 얻은 RGB 값들과 피설문자가 지정한 RGB값에 대한 비교를 진행했다. 인간의 눈을 반영하는 측정 기준인 CIELAB의 유클리드안거리는 평균 13.85로 색상사전만을 활용한 방안의 30.88, 한글 동의어사전 사이트인 워드넷을 추가로 활용한 방안의 30.38에 비해 비교적 낮은 색상 간의 거리 값을 보였다. 연구에서 제시하는 방안에서 군집화 과정을 제외한 방안의 색 차는 13.88로 군집화 과정이 색 차를 줄여준다는 것을 확인할 수 있었다. 본 연구에서는 기존 동의어 처리 방식인 사전 방식이 지닌 한계에서 벗어나기 위해, 사전 방식에 새로운 색상명에 대한 실시간 동의어 처리 방식을 결합한 RGB값 기반의 새로운 색상 동의어 처리 방안을 제안한다. 본 연구의 결과를 활용하여 전자상거래 검색 시스템의 지능화에 크게 기여할 수 있을 것이다.

자율 주행을 위한 Edge to Edge 모델 및 지연 성능 평가 (Edge to Edge Model and Delay Performance Evaluation for Autonomous Driving)

  • 조문기;배경율
    • 지능정보연구
    • /
    • 제27권1호
    • /
    • pp.191-207
    • /
    • 2021
  • 오늘날 이동통신은 급증하는 데이터 수요에 대응하기 위해서 주로 속도 향상에 초점을 맞추어 발전해 왔다. 그리고 5G 시대가 시작되면서 IoT, V2X, 로봇, 인공지능, 증강 가상현실, 스마트시티 등을 비롯하여 다양한 서비스를 고객들에게 제공하기위한 노력들이 진행되고 있고 이는 우리의 삶의 터전과 산업 전반에 대한 환경을 바꿀 것으로 예상되고 되고 있다. 이러한 서비스를 제공하기위해서 고속 데이터 속도 외에도, 실시간 서비스를 위한 지연 감소 그리고 신뢰도 등이 매우 중요한데 5G에서는 최대 속도 20Gbps, 지연 1ms, 연결 기기 106/㎢를 제공함으로써 서비스 제공할 수 있는 기반을 마련하였다. 하지만 5G는 고주파 대역인 3.5Ghz, 28Ghz의 높은 주파수를 사용함으로써 높은 직진성의 빠른 속도를 제공할 수 있으나, 짧은 파장을 가지고 있어 도달할 수 있는 거리가 짧고, 회절 각도가 작아서 건물 등을 투과하지 못해 실내 이용에서 제약이 따른다. 따라서 기존의 통신망으로 이러한 제약을 벗어나기가 어렵고, 기반 구조인 중앙 집중식 SDN 또한 많은 노드와의 통신으로 인해 처리 능력에 과도한 부하가 발생하기 때문에 지연에 민감한 서비스 제공에 어려움이 있다. 그래서 자율 주행 중 긴급 상황이 발생할 경우 사용 가능한 지연 관련 트리 구조의 제어 기능이 필요하다. 이러한 시나리오에서 차량 내 정보를 처리하는 네트워크 아키텍처는 지연의 주요 변수이다. 일반적인 중앙 집중 구조의 SDN에서는 원하는 지연 수준을 충족하기가 어렵기 때문에 정보 처리를 위한 SDN의 최적 크기에 대한 연구가 이루어져야 한다. 그러므로 SDN이 일정 규모로 분리하여 새로운 형태의 망을 구성 해야하며 이러한 새로운 형태의 망 구조는 동적으로 변하는 트래픽에 효율적으로 대응하고 높은 품질의 유연성 있는 서비스를 제공할 수 있다. 이러한 SDN 구조 망에서 정보의 변경 주기, RTD(Round Trip Delay), SDN의 데이터 처리 시간은 지연과 매우 밀접한 상관관계를 가진다. 이 중 RDT는 속도는 충분하고 지연은 1ms 이하이기에 유의미한 영향을 주는 요인은 아니지만 정보 변경 주기와 SDN의 데이터 처리 시간은 지연에 크게 영향을 주는 요인이다. 특히, 5G의 다양한 응용분야 중에서 지연과 신뢰도가 가장 중요한 분야인 지능형 교통 시스템과 연계된 자율주행 환경의 응급상황에서는 정보 전송은 매우 짧은 시간 안에 전송 및 처리돼야 하는 상황이기때문에 지연이라는 요인이 매우 민감하게 작용하는 조건의 대표적인 사례라고 볼 수 있다. 본 논문에서는 자율 주행 시 응급상황에서 SDN 아키텍처를 연구하고, 정보 흐름(셀 반경, 차량의 속도 및 SDN의 데이터 처리 시간의 변화)에 따라 차량이 관련정보를 요청해야 할 셀 계층과의 상관관계에 대하여 시뮬레이션을 통하여 분석을 진행하였다.

코로나 19 하에서 재난문자 내의 정보유형 및 특성: 서울특별시 재난문자를 중심으로 (Information types and characteristics within the Wireless Emergency Alert in COVID-19: Focusing on Wireless Emergency Alerts in Seoul)

  • 윤성욱;남기환
    • 지능정보연구
    • /
    • 제28권1호
    • /
    • pp.45-68
    • /
    • 2022
  • 대한민국 중앙부처, 지방자치단체는 코로나 19가 급속도로 확산하는 팬데믹 상황에서 재난상황 극복을 위해 재난대응에 필요한 정보를 재난문자를 통해 제공하였다. 재난문자는 국민들이 가장 많이 접하는 재난정보 전달수단으로서, 휴대폰에 직접 방송하는 CBS(Cell Broadcast Service) 방식을 채택하고 있어 직접 찾아보는 수고스러움 없이 휴대폰을 통해 쉽게 정보를 접할 수 있다는 장점이 있다. 본 연구는 지난 1년 1개월간(2020년 1월~2021년 1월) 서울특별시에 발송된 재난문자의 특성을 다양한 텍스트마이닝 방법론 등을 통해 도출하고 재난문자에 포함된 다양한 유형의 정보가 국민들의 이동 행태에 어떠한 영향을 미쳤는지를 서울특별시 지역구의 연령별 유동인구의 이동성을 통해 확인하였다. 각 문자에 포함된 주요 단어와 포함된 정보를 분류하는 과정을 거치고 포함된 단어를 기반으로 하는 문서 군집 분석 기법을 적용해 개별 발송 문자를 분석 단위로써 활용할 수 있도록 텍스트 분석을 시행하였다. 이후, 텍스트마이닝을 통해 추출한 재난문자의 특성이 지역별, 연령별 인구이동성에 미친 영향을 규명하였다. 구조화된 모형을 활용하여 재난정보가 인구이동성에 미치는 영향을 기본효과, 누적효과로 구분하여 측정하였다. 지자체가 보유한 재난문자 발송권한으로 인해 재난문자 발송 특성은 지자체별로 상이함을 계량 분석에 활용하였다. 분석 결과 인구이동성에 변화를 유발하는 정보유형은 연령별로 상이함을 확인할 수 있었다. 날짜와 순서에 관련된 정보는 60-70대의 인구이동성을 유의미하게 감소시키는 것을 확인할 수 있었다. 온라인 정보는 20대의 이동성을 감소시켰고, 증상과 관련된 정보는 30대의 인구이동성을 감소시켰다. 한편, 방역 정책 준수를 당부하는 의미를 포함하는 규범적 단어 등은 전 연령의 인구이동성에 유의미한 변화를 불러일으키지 못함을 확인할 수 있었다. 이는 재난대응에 도움이 되는 유의미한 정보들만 재난문자에 포함되어야 함을 의미한다. 한편, 인구이동성에 유의미한 변화를 불러일으키는 정보유형 또한 재난문자가 반복됨에 따라 효과가 상쇄함을 음의 누적효과 추정 결과를 통해 확인할 수 있었다.

온라인 쇼핑에서 웹루밍으로의 쇼핑전환 의도에 영향을 미치는 요인에 대한 연구 (An Empirical Study on Influencing Factors of Switching Intention from Online Shopping to Webrooming)

  • 최현승;양성병
    • 지능정보연구
    • /
    • 제22권1호
    • /
    • pp.19-41
    • /
    • 2016
  • 정보통신기술의 발전과 모바일 기기 사용의 생활화로 인해 최근 많은 소비자들이 멀티채널 쇼핑(multi-channel shopping)이라는 새로운 쇼핑 행태를 보이고 있다. 온라인 쇼핑이 등장한 이후, 온라인 매장에서 상품을 구매하기 전 오프라인 매장에서 상품을 먼저 확인하는 쇼루밍(showrooming) 형태의 멀티채널 쇼핑이 한 때 대세를 이루었으나, 최근에는 스마트폰, 태블릿 PC, 스마트워치 등 스마트 기기 사용의 폭발적 증가와 옴니채널(omni-channel) 전략으로 대표되는 오프라인 채널의 대대적 반격으로 인해 오프라인 매장에서 상품을 구매하기 전 온라인(혹은 모바일)으로 정보를 먼저 확인하는 웹루밍(webrooming) 현상이 도드라지게 나타나 온라인 소매업자를 위협하고 있다. 이러한 상황에서 소비자의 온라인 쇼핑에서 웹루밍으로의 쇼핑전환 의도에 영향을 미치는 요인을 분석하는 것이 의미가 있음에도 불구하고, 기존 대부분의 선행연구는 싱글채널(single-channel) 혹은 멀티채널 쇼핑 자체에만 초점을 맞추고 있다. 이에, 본 연구에서는 밀고-당기기-이주이론(push-pull-mooring theory)을 바탕으로 소비자의 온라인 채널 쇼핑이 웹루밍 형태의 쇼핑으로 전환되는 과정을 상품정보 탐색과 구매행위로 각각 구분하여 그 영향을 실증하였다. 연구모형을 검증하기 위하여, 웹루밍 경험이 있는 수도권 소재 대학생을 대상으로 280개의 설문 표본을 수집하였다. 본 연구의 결과는 현업 마케팅 종사자에게 멀티채널 소비자들을 관리하는 데 있어 실무적인 시사점을 제공함과 동시에, 향후 다양한 형태의 멀티채널 쇼핑전환 연구로의 확장에 기여할 수 있을 것으로 기대한다.

카테고리 중립 단어 활용을 통한 주가 예측 방안: 텍스트 마이닝 활용 (Stock Price Prediction by Utilizing Category Neutral Terms: Text Mining Approach)

  • 이민식;이홍주
    • 지능정보연구
    • /
    • 제23권2호
    • /
    • pp.123-138
    • /
    • 2017
  • 주식 시장은 거래자들의 기업과 시황에 대한 기대가 반영되어 움직이기에, 다양한 원천의 텍스트 데이터 분석을 통해 주가 움직임을 예측하려는 연구들이 진행되어 왔다. 주가의 움직임을 예측하는 것이기에 단순히 주가의 등락 뿐만이 아니라, 뉴스 기사나 소셜 미디어의 반응에 따라 거래를 하고 이에 따른 수익률을 분석하는 연구들이 진행되어 왔다. 주가의 움직임을 예측하는 연구들도 다른 분야의 텍스트 마이닝 접근 방안과 동일하게 단어-문서 매트릭스를 구성하여 분류 알고리즘에 적용하여 왔다. 문서에 많은 단어들이 포함되어 있기 때문에 모든 단어를 가지고 단어-문서 매트릭스를 만드는 것보다는 단어가 문서를 범주로 분류할 때 기여도가 높은 단어들을 선정하여야 한다. 단어의 빈도를 고려하여 너무 적은 등장 빈도나 중요도를 보이는 단어는 제거하게 된다. 단어가 문서를 정확하게 분류하는 데 기여하는 정도를 측정하여 기여도에 따라 사용할 단어를 선정하기도 한다. 단어-문서 매트릭스를 구성하는 기본적인 방안인 분석의 대상이 되는 모든 문서를 수집하여 분류에 영향력을 미치는 단어를 선정하여 사용하는 것이었다. 본 연구에서는 개별 종목에 대한 문서를 분석하여 종목별 등락에 모두 포함되는 단어를 중립 단어로 선정한다. 선정된 중립 단어 주변에 등장하는 단어들을 추출하여 단어-문서 매트릭스 생성에 활용한다. 중립 단어 자체는 주가 움직임과 연관관계가 적고, 중립 단어의 주변 단어가 주가 상승에 더 영향을 미칠 것이라는 생각에서 출발한다. 생성된 단어-문서 매트릭스를 가지고 주가의 등락 여부를 분류하는 알고리즘에 적용하게 된다. 본 연구에서는 종목 별로 중립 단어를 1차 선정하고, 선정된 단어 중에서 다른 종목에도 많이 포함되는 단어는 추가적으로 제외하는 방안을 활용하였다. 온라인 뉴스 포털을 통해 시가 총액 상위 10개 종목에 대한 4개월 간의 뉴스 기사를 수집하였다. 3개월간의 뉴스 기사를 학습 데이터로 분류 모형을 수립하였으며, 남은 1개월간의 뉴스 기사를 모형에 적용하여 다음 날의 주가 움직임을 예측하였다. 본 연구에서 제안하는 중립 단어 활용 알고리즘이 희소성에 기반한 단어 선정 방안에 비해 우수한 분류 성과를 보였다.

ICT 기반 다중 가치사슬의 동적 플랫폼에서의 공존 모형: 의료서비스를 중심으로 (A Coexistence Model in a Dynamic Platform with ICT-based Multi-Value Chains: focusing on Healthcare Service)

  • 이현정;장용식
    • 지능정보연구
    • /
    • 제23권1호
    • /
    • pp.69-93
    • /
    • 2017
  • ICT는 제조기반 산업사회에서 가치사슬의 효율성/효과성의 지원을 목적으로 도입되었으나 정보기반 산업사회에서는 ICT가 시장 가치 창출의 주체가 되어 다중 가치사슬의 형성 가능성을 기대하게 하였다. 즉, ICT의 발전은 공급 및 수요의 다변화와 다양성의 동인이 되면서 가치를 창출하기 시작했고, 이를 중심으로 하는 신 가치 사슬의 등장은 구 가치사슬과의 충돌의 문제를 야기하였다. 즉, 다중 가치사슬이 존재 가능한 플랫폼에서는 가치사슬 간의 충돌, 중첩, 생성, 상실 등의 동적 상황 등에 따른 신/구 가치의 창출과 소멸 등이 발생하게 된다. 예를 들어, ICT에 기반을 둔 우버택시 서비스는 신 가치사슬을 형성하여 택시서비스 시장에서 신/구 가치사슬간의 충돌을 야기했다. 제조기반 산업사회에서는 단일 가치사슬의 시장 선점이 중요하였으나, ICT 기반 융합 제품/서비스/정보가 유통되는 플랫폼에서는 시장 상황 변수의 동적 변화에 따라 다중의 가치사슬이 존재하면서 서로 충돌과 공존을 야기하게 되었다. 따라서 ICT에 기반을 둔 지능형 정보사회의 발전과 함께 시장가치 최대화를 위해 다중 가치사슬 간 충돌 최소화와 공존의 최대 가능성을 높일 수 있는 모형의 제시가 중요하다. 본 연구에서는 먼저 의료서비스 시장을 중심으로 하는 다중 가치사슬의 동적 플랫폼 형성에 대해 논의한다. 즉, 의료서비스 시장에 ICT 기반 원격 및 지능형 의료서비스 등이 구 시장에 진입함으로써 발생하는 가치사슬 간의 충돌을 최소화하고 공존 가능성을 높이기 위한 공존 요인 변수에 대해 논의 한다. 이를 위해 다중의 공급과 소비 및 서비스가 존재 가능한 다중 가치사슬이 충돌 및 중첩하는 과정에서 공존 요인 변수 등에 기반하여 가치 사슬들을 동적으로 생성/변화/소멸 및 공존하기까지 의료서비스 플랫폼에 대해 논의한다. 또한 플랫폼 내의 각 가치사슬의 생산가치의 증가와 가치사슬 간의 상호 작용에 의한 부가가치의 창출 등에 의해 플랫폼의 총 가치가 증가 될 수 있음을 논의한다. 마지막으로 공존 모형을 제안하고 실험을 통해 가치사슬 간의 공존 가능성을 제시한다.