• Title/Summary/Keyword: System semiconductor

Search Result 2,550, Processing Time 0.026 seconds

Development of Camera-based Character Creation and Motion Control System using StyleGAN Deep Learning Technology (StyleGAN 딥러닝 기술을 활용한 카메라 기반 캐릭터 생성 및 모션 제어 시스템 개발)

  • Lee, Jeong-Hun;Kim, Ju-Hyeong;Shin, Dong-hyeon;Yang, Jae-hyeong;Chang, Moon-soo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.934-936
    • /
    • 2022
  • 현재 사회적인(COVID-19) 영향으로 메타버스에 대한 수요가 급증하였지만, 메타버스 플랫폼 진입을 지원하는 XR(AR/VR) 장비의 높은 가격대와 전문성 요구로 폭넓은 수요층을 포괄하기 어려운 상황이다. 본 논문에서는 이러한 수요층의 어려움을 개선하고자 웹 캠이나 스마트폰 카메라로 생성된 개인의 사진 이미지를 StyleGAN 딥러닝 기술과 접목시켜 캐릭터를 생성해 Mediapipe를 활용하여 모션 측정 및 제어를 처리하는 서비스를 제안하여 메타버스 시장의 대중화에 기여하고자 한다.

A Study on the Compensation of Reactive Power by Power MOSFET INVERTER (전력용 MOSFET Inverter에 의한 무방전력보상에 관한 연구)

  • 이계호;김동필
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.3
    • /
    • pp.163-170
    • /
    • 1987
  • It is known that reactive component of AC power in the power system gives no energy to outside and cuses enlargiment of power apparatus, voltage fluctuation and unstability of power system. The power conversion system and control system which are composed of power semiconductor devices such as tyristor, transistor, GTO and so on have been appeared as new sources of reactive power. So the cmpensation of reactive power in power semiconductor systems is one of impending problem on the point of energy conservation and inprovement of power factor. This paper treates the fundamental review of the current type power compensation system that compensates the reactive power by MOSFET inverter. This inverter detects not only the reactive power of fundamental wave but also that of all harmoics created in the power semiconductor system and is scheduled to control by sampled value.

  • PDF

Applying Expert System to Statistical Process Control in Semiconductor Manufacturing (반도체 수율 향상을 위한 통계적 공정 제어에 전문가 시스템의 적용에 관한 연구)

  • 윤건상;최문규;김훈모;조대호;이칠기
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.103-112
    • /
    • 1998
  • The evolution of semiconductor manufacturing technology has accelerated the reduction of device dimensions and the increase of integrated circuit density. In order to improve yield within a short turn around time and maintain it at high level, a system that can rapidly determine problematic processing steps is needed. The statistical process control detects abnormal process variation of key parameters. Expert systems in SPC can serve as a valuable tool to automate the analysis and interpretation of control charts. A set of IF-THEN rules was used to formalize knowledge base of special causes. This research proposes a strategy to apply expert system to SPC in semiconductor manufacturing. In analysis, the expert system accomplishes the instability detection of process parameter, In diagnosis, an engineer is supported by process analyzer program. An example has been used to demonstrate the expert system and the process analyzer.

  • PDF

A Study on the Reduction of harmonics by Current type PWM - Inverter (전류형 PWM 인버터에 의한 고조파 저감에 관한 연구)

  • Lee, Kye-Ho;Jang, Young-Hak;Yang, Seung-Hak;Jung, Young-Gook
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.359-361
    • /
    • 1987
  • It is known that the reactive component of AC power in the Power system gives no energy to outside and causes enlargement of power apparatus, voltage fluctuation and unstability of power system. The power conversion system and control system which are composed of power semiconductor devices such as Thyrisor, transistor, GTO and so on have been appeared as new sources of Harmonics. So the reduction of harmonics in power semiconductor system is one of impending problems on the point of energy conservation and improvement of power factor. This paper treates the fundamental review of the harmonics reduction by Current type PWM-Inverter. This Inverter-detects not only the fundamental wave but also that of all harmonics created in the power semiconductor system and is scheduled to control by sampled value.

  • PDF

Direct Carrier System Based 300mm FAB Line Simulation (Direct 반송방식에 기반을 둔 300mm FAB Line 시뮬레이션)

  • Lee, Hong-Soon;Han, Young-Shin;Lee, Chil-Gee
    • Journal of the Korea Society for Simulation
    • /
    • v.15 no.2
    • /
    • pp.51-57
    • /
    • 2006
  • Production environment of semiconductor industry is shifting from 200mm wafer process to 300mm wafer process. In the new era of semiconductor industry, FAB (fabrication) Line Automation is a key issue that semiconductor industry is facing in shifting from 200mm wafer fabrication to 300mm wafer fabrication. In addition, since the semiconductor manufacturing technologies are being widely spread and market competitions are being stiffened, cost-down techniques became basis of growth. Most companies are trying to reduce average cycle time to increase productivity and delivery time. In this paper, we simulated 300mm wafer fabrication semiconductor manufacturing process by laying great emphasis on reduce average cycle time.

  • PDF

Design of Continuous Passive Motion Medical Device System with Range of Motion Measurement Function (관절가동범위 측정 기능을 갖는 연속수동운동 의료기기 시스템 설계)

  • Kang Won Lee;Min Soo Park;Do Woo Yu;Oh Yang;Chang Ho Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.87-92
    • /
    • 2023
  • As the elderly population increases, the number of patients with various joint diseases, including degenerative arthritis, is steadily increasing. CPM medical devices are needed to effectively treat degenerative arthritis that is common in the elderly population. Domestic CPM medical devices have limited functions and are highly dependent on imports for expensive imported medical devices. To solve this problem, we designed a ROM measurement function using a current sensor that is not present in existing composite joint CPM medical devices. The algorithm was designed using the fact that the force caused by joint stiffness greatly increases the current flowing through the DC motor. In addition, the need for digital healthcare in the medical field is gradually expanding as the proportion of chronically ill patients increases due to the spread of the non-face-to-face economy due to COVID-19 and the aging population. Therefore, this paper aims to improve the performance of CPM medical devices by allowing real-time confirmation of rehabilitation exercise information and operation range measurement results in accordance with digital healthcare trends through a Bluetooth application developed as an Android studio.

  • PDF

Experimental Investigation of 2kW Class Non-flammable Mixed Refrigerant Joule-Thomson Refrigerator with Cooling Temperature of -100 ℃ for Cryogenic Etching (초저온 식각을 위한 냉각용량 2kW 급 -100 ℃ 비가연성 혼합냉매 줄톰슨 냉각기의 실험적 고찰)

  • Jongmin Eun;Cheonkyu Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.2
    • /
    • pp.6-11
    • /
    • 2024
  • This paper presents the design and experimental analysis of a cryogenic refrigeration system for -100 ℃, primarily intended for semiconductor etching process. The refrigeration system utilizes non-flammable mixed refrigerant Joule-Thomson refrigeration cycle, incorporating a precooling stage to enhance overall performance. The selected refrigerants for the system include R1234yf for the precooling stage, and Ar, R14, R23 and R218 for the main cooling stage of the Joule-Thomson refrigeration cycle. Design results according to the system constraints and experimental results are discussed, including lowest evaporation temperature, compressor isentropic efficiency and overall pressure tendencies. The achieved refrigerant fraction from optimal design is Ar: R14: R23: R218 = 0.15: 0.4: 0.15: 0.3, indicating COP of 0.1118 at the isentropic compressor efficiency of 50%. The experimental result shows the developed system reaches steady state in approximately 3 hours.

  • PDF

Statistical Design of Experiments and Analysis: Hierarchical Variance Components and Wafer-Level Uniformity on Gate Poly-Silicon Critical Dimension (통계적 실험계획 및 분석: Gate Poly-Silicon의 Critical Dimension에 대한 계층적 분산 구성요소 및 웨이퍼 수준 균일성)

  • Park, Sung-min;Kim, Byeong-yun;Lee, Jeong-in
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.2
    • /
    • pp.179-189
    • /
    • 2003
  • Gate poly-silicon critical dimension is a prime characteristic of a metal-oxide-semiconductor field effect transistor. It is important to achieve the uniformity of gate poly-silicon critical dimension in order that a semiconductor device has acceptable electrical test characteristics as well as a semiconductor wafer fabrication process has a competitive net-die-per-wafer yield. However, on gate poly-silicon critical dimension, the complexity associated with a semiconductor wafer fabrication process entails hierarchical variance components according to run-to-run, wafer-to-wafer and even die-to-die production unit changes. Specifically, estimates of the hierarchical variance components are required not only for disclosing dominant sources of the variation but also for testing the wafer-level uniformity. In this paper, two experimental designs, a two-stage nested design and a randomized complete block design are considered in order to estimate the hierarchical variance components. Since gate poly-silicon critical dimensions are collected from fixed die positions within wafers, a factor representing die positions can be regarded as fixed in linear statistical models for the designs. In this context, the two-stage nested design also checks the wafer-level uniformity taking all sampled runs into account. In more detail, using variance estimates derived from randomized complete block designs, Duncan's multiple range test examines the wafer-level uniformity for each run. Consequently, a framework presented in this study could provide guidelines to practitioners on estimating the hierarchical variance components and testing the wafer-level uniformity in parallel for any characteristics concerned in semiconductor wafer fabrication processes. Statistical analysis is illustrated for an experimental dataset from a real pilot semiconductor wafer fabrication process.

Circuit Models for Low Frequency Modulation Characteristics of Semiconductor Lasers (반도체 레이저의 저주파 변조특성의 회로 모델)

  • 소준호
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1989.02a
    • /
    • pp.214-217
    • /
    • 1989
  • The most attractive feature of semiconductor lasers as sources for coherent optical communication system is the ability to produce frequency modulation by modulation of the bias current. The frequency deviation of semiconductor lasers under direct modulation depends on the laser structure and modulation frequency. This paper describes a circuit modeling techniques for the directly frequency modulated CSP (Channeled Substrated Planner) semiconductor laser. Predictions from this model are compared with the other published results of sinusoidal frequency modulation below than 1 GHz.

  • PDF

The Switching Characteristic and Efficiency of New Generation SiC MOSFET (차세대 전력반도체 SiC MOSFET의 스위칭 특성 및 효율에 관한 연구)

  • Choi, Won-mook;Ahn, Ho-gyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.353-360
    • /
    • 2017
  • Recently, due to physical limitation of Si based power semiconductor, development speed of switching power semiconductors is falling and it is difficult to expect any further performance improvements. SiC based power semiconductor with superior characteristic than Si-based power semiconductor have been developed to overcome these limitations. however, there is not method to apply for real system. Therefore, suggested the feasibility and solution for SiC-based power semiconductor system. design to 1kW class DC-DC boost converter and demonstrated the superiority of SiC MOSFET under the same operating conditions by analyzing switching frequency, duty ratio, voltage and current, and comparing with Si based power semiconductor through experimental efficiency according to each system load. The SiC MOSFET has high efficiency and fast switching speed, and can be designed with small inductors and capacitors which has the advantage of volume reduction of the entire system.