• 제목/요약/키워드: System of equations

검색결과 4,578건 처리시간 0.031초

SAS/STAT를 이용하여 비선형 방정식계의 해를 구하는 방법 (Using SAS/STAT to Solve a System of Nonlinear Equations)

  • 남윤석;조태경;심규박
    • 품질경영학회지
    • /
    • 제28권1호
    • /
    • pp.95-104
    • /
    • 2000
  • There exist many computer algorithms to solve a system of nonlinear equations. But in case nonlinear equations are complex it is not easy to solve a system of nonlinear equations. In this paper we consider the method of using NLIN procedure in SAS/STAT to solve a system of nonlinear equations.

  • PDF

A SYSTEM OF NONLINEAR PROJECTION EQUATIONS WITH PERTURBATION IN HILBERT SPACES

  • Zhou, Li-Wen;Cho, Yeol-Je;Huang, Nan-Jing
    • East Asian mathematical journal
    • /
    • 제24권2호
    • /
    • pp.191-199
    • /
    • 2008
  • In this paper, we introduce and studied a system of nonlinear projection equations with perturbation in Hilbert spaces. By using the fixed point theorem, we prove an existence of solution for this system of nonlinear projection equations. We construct an algorithm for approximating the solution of the system of nonlinear projection equations with perturbation and show that the iterative sequence generated by the algorithm converges to the solution of the system of nonlinear projection equations with perturbation under some suitable conditions.

  • PDF

트랙좌표계를 이용한 철도차량의 동역학 해석에 관한 연구 (A Study on the Dynamic Analysis of Railway Vehicle by Using Track Coordinate System)

  • 강주석
    • 한국자동차공학회논문집
    • /
    • 제21권2호
    • /
    • pp.122-130
    • /
    • 2013
  • Rail geometries such as cant, grade and curvature can be easily represented by means of a track coordinate system. In this analysis, in order to derive a dynamic and constraint equation of a wheelset, the track coordinate system is used as an intermediate stage. Dynamic and constraint equations of railway vehicle bodies except the wheelset are written in the Cartesian coordinate system as a conventional method. Therefore, whole dynamic equations of a railway vehicle are derived by combining wheelset dynamic equations and dynamic equations of railway vehicle bodies. Constraint equations and constraint Jacobians are newly derived for the track coordinate system. A process for numerical analysis is suggested for the derived dynamic and constraint equations of a railway vehicle. The proposed dynamic analysis of a railway vehicle is validated by comparison against results obtained from VI-RAIL analysis.

Dynamics of the Macpherson Strut Motor-Vehicle Suspension System in Point and Joint Coordinates

  • Attia, Hazem-Ali
    • Journal of Mechanical Science and Technology
    • /
    • 제17권9호
    • /
    • pp.1287-1296
    • /
    • 2003
  • In this paper the dynamic analysis of the Macpherson strut motor-vehicle suspension system is presented. The equations of motion are formulated using a two-step transformation. Initially, the equations of motion are derived for a dynamically equivalent constrained system of particles that replaces the rigid bodies by applying Newton's second law The equations of motion are then transformed to a reduced set in terms of the relative joint variables. Use of both Cartesian and joint variables produces an efficient set of equations without loss of generality For open chains, this process automatically eliminates all of the non-working constraint forces and leads to an efficient solution and integration of the equations of motion. For closed loops, suitable joints should be cut and few cut-joints constraint equations should be included for each closed chain. The chosen suspension includes open and closed loops with quarter-car model. The results of the simulation indicate the simplicity and generality of the dynamic formulation.

Scalar form of dynamic equations for a cluster of bodies

  • Vinogradov, Oleg
    • Structural Engineering and Mechanics
    • /
    • 제5권2호
    • /
    • pp.209-220
    • /
    • 1997
  • The dynamic equations for an arbitrary cluster comprising rigid spheres or assemblies of spheres (subclusters) encountered in granular-type systems are considered. The system is treated within the framework of multibody dynamics. It is shown that for an arbitrary cluster topology the governing equations can be given in an explicit scalar from. The derivation is based on the D'Alembert principle, on inertial coordinate system for each body and direct utilization of the path matrix describing the topology. The scalar form of the equations is important in computer simulations of flow of granular-type materials. An illustrative example of a three-body system is given.

USING CROOKED LINES FOR THE HIGHER ACCURACY IN SYSTEM OF INTEGRAL EQUATIONS

  • Hashemiparast, S.M.;Sabzevari, M.;Fallahgoul, H.
    • Journal of applied mathematics & informatics
    • /
    • 제29권1_2호
    • /
    • pp.145-159
    • /
    • 2011
  • The numerical solution to the linear and nonlinear and linear system of Fredholm and Volterra integral equations of the second kind are investigated. We have used crooked lines which includ the nodes specified by modified rationalized Haar functions. This method differs from using nominal Haar or Walsh wavelets. The accuracy of the solution is improved and the simplicity of the method of using nominal Haar functions is preserved. In this paper, the crooked lines with unknown coefficients under the specified conditions change the system of integral equations to a system of equations. By solving this system the unknowns are obtained and the crooked lines are determined. Finally, error analysis of the procedure are considered and this procedure is applied to the numerical examples, which illustrate the accuracy and simplicity of this method in comparison with the methods proposed by these authors.

ELASTOKINEMATIC ANALYSIS OF A SUSPENSION SYSTEM WITH LINEAR RECURSIVE FORMULA

  • KANG J. S.
    • International Journal of Automotive Technology
    • /
    • 제6권4호
    • /
    • pp.375-381
    • /
    • 2005
  • This paper presents linear algebraic equations in the form of recursive formula to compute elastokinematic characteristics of a suspension system. Conventional methods of elastokinematic analysis are based on nonlinear kinematic constrant equations and force equilibrium equations for constrained mechanical systems, which require complicated and time-consuming implicit computing methods to obtain the solution. The proposed linearized elastokinematic equations in the form of recursive formula are derived based on the assumption that the displacements of elastokinematic behavior of a constrained mechanical system under external forces are very small. The equations can be easily computerized in codes, and have the advantage of sharing the input data of existing general multi body dynamic analysis codes. The equations can be applied to any form of suspension once the type of kinematic joints and elastic components are identified. The validity of the method has been proved through the comparison of the results from established elastokinematic analysis software. Error estimation and analysis due to piecewise linear assumption are also discussed.

AN INITIAL VALUE METHOD FOR SINGULARLY PERTURBED SYSTEM OF REACTION-DIFFUSION TYPE DELAY DIFFERENTIAL EQUATIONS

  • Subburayan, V.;Ramanujam, N.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제17권4호
    • /
    • pp.221-237
    • /
    • 2013
  • In this paper an asymptotic numerical method named as Initial Value Method (IVM) is suggested to solve the singularly perturbed weakly coupled system of reaction-diffusion type second order ordinary differential equations with negative shift (delay) terms. In this method, the original problem of solving the second order system of equations is reduced to solving eight first order singularly perturbed differential equations without delay and one system of difference equations. These singularly perturbed problems are solved by the second order hybrid finite difference scheme. An error estimate for this method is derived by using supremum norm and it is of almost second order. Numerical results are provided to illustrate the theoretical results.

Time-dependent simplified spherical harmonics formulations for a nuclear reactor system

  • Carreno, A.;Vidal-Ferrandiz, A.;Ginestar, D.;Verdu, G.
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.3861-3878
    • /
    • 2021
  • The steady-state simplified spherical harmonics equations (SPN equations) are a higher order approximation to the neutron transport equations than the neutron diffusion equation that also have reasonable computational demands. This work extends these results for the analysis of transients by comparing of two formulations of time-dependent SPN equations considering different treatments for the time derivatives of the field moments. The first is the full system of equations and the second is a diffusive approximation of these equations that neglects the time derivatives of the odd moments. The spatial discretization of these methodologies is made by using a high order finite element method. For the time discretization, a semi-implicit Euler method is used. Numerical results show that the diffusive formulation for the time-dependent simplified spherical harmonics equations does not present a relevant loss of accuracy while being more computationally efficient than the full system.

관성항법장치 오차방정식에 대한 두 가지 표현식 (Two expressions for the inertial navigation system error equations)

  • 김종주
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.668-671
    • /
    • 1996
  • Two expressions for the inertial navigation system error equations are derived using a perturbation method; one in navigation frame, and the other in geographic frame. The equivalence between two expressions is shown by explicit equations and computer simulation.

  • PDF