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A SYSTEM OF NONLINEAR PROJECTION EQUATIONS
WITH PERTURBATION IN HILBERT SPACES

Li-wen Zhou, Yeol Je Cho, and Nan-jing Huang

Abstract. In this paper, we introduce and studied a system of nonlinear
projection equations with perturbation in Hilbert spaces. By using the
fixed point theorem, we prove an existence of solution for this system of

nonlinear projection equations. We construct an algorithm for approxi-
mating the solution of the system of nonlinear projection equations with
perturbation and show that the iterative sequence generated by the al-

gorithm converges to the solution of the system of nonlinear projection
equations with perturbation under some suitable conditions.

1. Introduction

In recent years, the variational inequalities and complementarity problems
have been become effective and useful tools for a wide class of problems aris-
ing in a lot of different fields of pure and applied subject, such as optimization
theory, mathematical programming, elasticity theory, structural mechanics, en-
gineering science, economics equilibrium, free boundary valued problems and
so on. For more details, we refer to [2, 3, 4, 6, 7, 8, 9, 10, 11, 13, 17] and the
references therein.

It is well known that the projection method plays an important role in solving
the variational inequalities involved generalized monotonicity in Hilbert spaces
(see, for example, [12, 14, 15, 18, 19] and the references therein). In 2001,
Zhao and Sun [20] introduced and studied the solvability problems for a class
of nonlinear projection equations in finite dimensional spaces. They proved
some alternative theorems for the nonlinear projection equations and obtained
some applications to generalized complementarity problems.

Throughout this paper, we assume that X is a Hilbert space with norm ∥ · ∥
and inner product ⟨·, ·⟩, respectively. Let K1 and K2 be two nonempty subsets
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of X, ρ1, ρ2 > 0 be two constants, g, h : X → X and S, T, Ci, fi : X×X → X
be nonlinear mappings for i = 1, 2.

In this paper, we consider the following nonlinear system of projection equa-
tions with perturbation: find x, y ∈ X such that

(1.1)

 PK1 [f1(x, y) − ρ1T (x, y)] + C1(x, y) = g(x),

PK2 [f2(x, y) − ρ2S(x, y)] + C2(x, y) = h(y),

where PKi is the projection of X onto Ki (i = 1, 2).
It is easy to see the system (1.1) includes many know nonlinear projection

equations, variational inequalities and complementarity problems as special
cases.

(I) If Ci = 0 for i = 1, 2, then the problem (1.1) reduces to the following
problem: find x, y ∈ X such that

(1.2)

 PK1 [f1(x, y) − ρ1T (x, y)] = g(x),

PK2 [f2(x, y) − ρ2S(x, y)] = h(y),

(II) If K1 = K2 = K, T (x, y) = S(y, x), g and h are identity mappings,
f1(x, y) = y and f2(x, y) = x for all x, y ∈ X, then the system (1.2)
reduces to the following problem: find x, y ∈ K such that

(1.3)

 PK [y − ρ1S(y, x)] = x,

PK [x − ρ2S(x, y)] = y,

which was studied by Chang, Joseph Lee and Chan in [1].

(III) If f1(x, y) = g(x) and f2(x, y) = h(y) for all x, y ∈ X, then the problem
(1.1) reduces to the following problem: find x, y ∈ X such that

(1.4)

 PK1 [g(x) − ρ1T (x, y)] = g(x),

PK2 [h(y) − ρ2S(x, y)] = h(y).

It is easy to see that the problem (1.4) is equivalent to the following
system of variational inequalities: find x, y ∈ X such that g(x) ∈ K1,
h(y) ∈ K2 and

(1.5)

 ⟨T (x, y), u − g(x)⟩ ≥ 0, ∀u ∈ K1,

⟨S(x, y), v − h(y)⟩ ≥ 0, ∀v ∈ K2.

Moreover, if K1 and K2 are cones, then the system of variational in-
equalities (1.5) is equivalent to the following system of complementarity
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problems: find x, y ∈ X such that g(x) ∈ K1, h(y) ∈ K2, T (x, y) ∈ K∗
1 ,

S(x, y) ∈ K∗
2 and

(1.6)

 ⟨T (x, y), g(x)⟩ = 0,

⟨S(x, y), h(y)⟩ = 0,

where
K∗

1 = {u ∈ X : ⟨u, v⟩ ≥ 0, ∀v ∈ K1},
K∗

2 = {u ∈ X : ⟨u, v⟩ ≥ 0, ∀v ∈ K2}.

(IV) If K1 = K2 = K, g(x) = h(x) for all x ∈ X, f1 = f2 = f and S = T are
univariate mappings, then the problem (1.2) reduces to the following
problem: find x ∈ X such that

(1.7) g(x) = PK

[
f(x) − T (x)

]
which was introduced and studied by Zhao and Sun in [20].

2. Preliminaries

Definition 2.1. Let K ⊂ X be nonempty, closed and convex. For a given
point x ∈ X, u = PKx is said to be a projection of x onto K if

∥x − u∥ ≤ ∥x − v∥, ∀v ∈ K.

Definition 2.2. A mapping f : X → X is said to be α-Lipschitz continuous
if there exists a constant α > 0 such that

∥f(x) − f(y)∥ ≤ α∥x − y∥, ∀x, y ∈ X.

Definition 2.3. A mapping f : X → X is said to be γ-strongly monotone if
there exists a constant γ > 0 such that

⟨f(x) − f(y), x − y⟩ ≥ γ∥x − y∥2, ∀x, y ∈ X.

Definition 2.4. A mapping f : X → X is said to be β-strongly monotone
with respect to a mapping T : X → X if there exists a constant β > 0 such
that

⟨f(x) − f(y), Tx − Ty⟩ ≥ β∥x − y∥2, ∀x, y ∈ X.

Lemma 2.1 ([5]). Let F : X × X → X × X be a mapping such that

(2.1)

 ∥F (x1, y) − F (x2, y)∥ ≤ m1∥x1 − x2∥,

∥F (x, y1) − F (x, y2)∥ ≤ m2∥y1 − y2∥
for all x1, x2, y1, y2 ∈ X, where 0 < m1 < 1 and 0 < m2 < 1 are constants.
Then there exists a unique point (x∗, y∗) ∈ X × X such that F (x∗, y∗) =
(x∗, y∗).
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Lemma 2.2 ([9]). The projection mapping PK : X → K is a nonexpansive
mapping, that is,

∥PKx − PKy∥ ≤ ∥x − y∥, ∀x, y ∈ X

Lemma 2.3 ([9]). For a given x ∈ X, u = PKx if and only if u ∈ K satisfies
the inequality

⟨x − u, u − v⟩ ≥ 0, ∀v ∈ K.

3. Main Results

Now, we are ready to give our main results in this paper.

Theorem 3.1. Let g : X → X be α1-Lipschitz continuous and β1-strongly
monotone. Let h : X → X be α2-Lipschitz continuous and β2-strongly mono-
tone. Suppose that T, S, C1, C2 : X × X → X are four nonlinear mappings
such that T is γ11-Lipschitz continuous with respect to the first argument and
γ12-Lipschitz continuous with respect to the second argument, S is γ21-Lipschitz
continuous with respect to the second argument and γ22-Lipschitz continuous
with respect to the first argument, C1 is γ31-Lipschitz continuous with respect to
the first argument and γ32-Lipschitz continuous with respect to the second argu-
ment, C2 is γ41-Lipschitz continuous with respect to the first argument and γ42-
Lipschitz continuous with respect to the second argument. Let f1 : X ×X → X
be α31-Lipschitz continuous and β31-strongly monotone with respect to T for the
first argument, and α32-Lipschitz continuous and β32-strongly monotone with
respect to T for the second argument. Let f2 : X × X → X be α41-Lipschitz
continuous and β41-strongly monotone with respect to S for the second argu-
ment, and α42-Lipschitz continuous and β42-strongly monotone with respect to
S for the first argument. If

(3.1) 0 < m11 + m12 < 1, 0 < m21 + m22 < 1,

where

m11 =
√

α2
31 − 2ρ1β31 + ρ2

1γ
2
11 +

√
1 − 2β1 + α2

1 + γ31,

m12 =
√

α2
42 − 2ρ2β42 + ρ2

2γ
2
22 + γ41,

m21 =
√

α2
41 − 2ρ2β41 + ρ2

2γ
2
21 +

√
1 − 2β2 + α2

2 + γ42,

m22 =
√

α2
32 − 2ρ1β32 + ρ2

1γ
2
12 + γ32,

then the system of nonlinear projection equations with perturbation problem
(1.1) has a unique solution.

Proof. Let F : X × X → X × X be a mapping defined by

F (x, y) = (F1(x, y), F2(x, y)), ∀(x, y) ∈ X × X,
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where

F1(x, y) = PK1 [f1(x, y) − ρ1T (x, y)] + C1(x, y) + x − g(x),
F2(x, y) = PK2 [f2(x, y) − ρ2S(x, y)] + C2(x, y) + y − h(y).

We now show that F satisfies the condition (2.1). In fact, for any x1, x2, y ∈ X,
it follows from the assumptions and Lemma 2.2 that

∥∥∥F1(x1, y) − F1(x2, y)
∥∥∥

=
∥∥∥PK1 [f1(x1, y) − ρ1T (x1, y)] + C1(x1, y) + x1 − g(x1)

− PK1 [f1(x2, y) − ρ1T (x2, y)] − C1(x2, y) − x2 + g(x2)
∥∥∥

≤
∥∥∥PK1 [f1(x1, y) − ρ1T (x1, y)] − PK1 [f1(x2, y) − ρ1T (x2, y)]

∥∥∥
+

∥∥∥(x1 − g(x1)) − (x2 − g(x2))
∥∥∥ +

∥∥∥C1(x1, y) − C1(x2, y)
∥∥∥

≤
∥∥∥(f1(x1, y) − f1(x2, y)) −

(
ρ1T (x1, y) − ρ1T (x2, y)

)∥∥∥
+

∥∥∥(x1 − x2) − (g(x1) − g(x2))
∥∥∥ +

∥∥∥C1(x1, y) − C1(x2, y)
∥∥∥

=
(∥∥f1(x1, y) − f1(x2, y)

∥∥2 − 2ρ1

⟨
f1(x1, y) − f1(x2, y), T (x1, y) − T (x2, y)

⟩
+ ρ2

1

∥∥T (x1, y) − T (x2, y)
∥∥2

)1/2

+
(
∥x1 − x2∥2 − 2

⟨
x1 − x2, g(x1) − g(x2)

⟩
+

∥∥g(x1) − g(x2)
∥∥2

)1/2

+
∥∥∥C1(x1, y) − C1(x2, y)

∥∥∥
≤

(
α2

31∥x1 − x2∥2 − 2ρ1β31∥x1 − x2∥2 + ρ2
1γ

2
11∥x1 − x2∥2

)1/2

+
(
∥x1 − x2∥2 − 2β1∥x1 − x2∥2 + α2

1∥x1 − x2∥2
)1/2

+ γ31∥x1 − x2∥

=
(√

α2
31 − 2ρ1β31 + ρ2

1γ
2
11 +

√
1 − 2β1 + α2

1 + γ31

)∥∥∥x1 − x2

∥∥∥.

This implies that

(3.2)
∥∥∥F1(x1, y) − F1(x2, y)

∥∥∥ ≤ m11∥x1 − x2∥.

Again for any x1, x2, y ∈ X, from the assumptions and Lemma 2.2, we have
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∥∥∥F2(x1, y) − F2(x2, y)
∥∥∥

=
∥∥∥PK2 [f2(x1, y) − ρ2S(x1, y)] + C2(x1, y) + y − h(y)

− PK2 [f2(x2, y) − ρ2S(x2, y)] − C2(x2, y) − y + h(y)
∥∥∥

≤
∥∥∥PK2 [f2(x1, y) − ρ2S(x1, y)] − PK2 [f2(x2, y) − ρ2S(x2, y)]

∥∥∥
+

∥∥∥C2(x1, y) − C2(x2, y)
∥∥∥

≤
∥∥∥(f2(x1, y) − f2(x2, y)) −

(
ρ2S(x1, y) − ρ2S(x2, y)

)∥∥∥
+

∥∥∥C2(x1, y) − C2(x2, y)
∥∥∥

=
(∥∥f2(x1, y) − f2(x2, y)

∥∥2 − 2ρ2

⟨
f2(x1, y) − f2(x2, y), S(x1, y) − S(x2, y)

⟩
+ ρ2

2

∥∥S(x1, y) − S(x2, y)
∥∥2

)1/2

+
∥∥∥C2(x1, y) − C2(x2, y)

∥∥∥
≤

(
α2

42∥x1 − x2∥2 − 2ρ2β42∥x1 − x2∥2 + ρ2
2γ

2
22∥x1 − x2∥2

)1/2

+ γ41∥x1 − x2∥

=
(√

α2
42 − 2ρ2β42 + ρ2

2γ
2
22 + γ41

)∥∥∥x1 − x2

∥∥∥.

It follows that

(3.3)
∥∥∥F2(x1, y) − F2(x2, y)

∥∥∥ ≤ m12∥x1 − x2∥.

By (3.2) and (3.3), we have∥∥∥F (x1, y) − F (x2, y)
∥∥∥

=
∥∥∥F1(x1, y) − F1(x2, y)

∥∥∥ +
∥∥∥F2(x1, y) − F2(x2, y)

∥∥∥
≤ (m11 + m12)∥x1 − x2∥.

(3.4)

Similarly, we can prove

(3.5)
∥∥∥F2(x, y1) − F2(x, y2)

∥∥∥ ≤ m21∥y1 − y2∥

and

(3.6)
∥∥∥F1(x, y1) − F1(x, y2)

∥∥∥ ≤ m22∥y1 − y2∥.

It follows from (3.5) and (3.6) that∥∥∥F (x, y1) − F (x, y2)
∥∥∥ ≤ (m21 + m22)∥y1 − y2∥.(3.7)

Since 0 < m11 + m12 < 1 and 0 < m21 + m22 < 1, by (3.4) and (3.7), we know
that F satisfies condition (2.1). It follows from Lemma 2.1 that there exists a
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unique (x∗, y∗) ∈ X × X such that

(x∗, y∗) = F (x∗, y∗) =
(
F1(x∗, y∗), F2(x∗, y∗)

)
.

This implies that

g(x∗) = PK1 [f1(x∗, y∗) − ρ1T (x∗, y∗)] + C1(x∗, y∗),

h(y∗) = PK2 [f2(x∗, y∗) − ρ2S(x∗, y∗)] + C2(x∗, y∗)

and so (x∗, y∗) is the unique solution of the system of nonlinear projection
equations with perturbation problem (1.1). ¤

Algorithm 3.1. For any given point (x0, y0) ∈ X ×X, compute the sequence
{(xn, yn)} as follows: xn+1 = PK1 [f1(xn, yn) − ρ1T (xn, yn)] + C1(xn, yn) + xn − g(xn),

yn+1 = PK2 [f2(xn, yn) − ρ2S(xn, yn)] + C2(xn, yn) + yn − h(yn),

where PKi is the projection of X onto Ki, ρi > 0 (i = 1, 2) are constants.

Theorem 3.2. Suppose that all the conditions of Theorem 3.1 are satisfied.
Let {xn, yn} be a sequence generated by Algorithm 3.1. Then

xn → x∗, yn → y∗ (n → ∞),

where (x∗, y∗) is the unique solution of the system of nonlinear projection
equations with perturbation problem (1.1).

Proof. From Algorithm, we know that xn+1 = F1(xn, yn) and yn+1 = F2(xn, yn).
It follows from (3.2), (3.3), (3.5), (3.6) that

∥xn+1 − x∗∥ = ∥F1(xn, yn) − F1(x∗, y∗)∥
≤ m11∥xn − x∗∥ + m22∥yn − y∗∥(3.8)

and

∥yn+1 − y∗∥ = ∥F2(xn, yn) − F2(x∗, y∗)∥
≤ m12∥xn − x∗∥ + m21∥yn − y∗∥.(3.9)

Let m = max{m11 + m12,m21 + m22}. It follows from (3.8) and (3.9) that∥∥(xn+1,yn+1) − (x∗, y∗)
∥∥

= ∥xn+1 − x∗∥ + ∥yn+1 − y∗∥
≤ (m11 + m12)∥xn − x∗∥ + (m21 + m22)∥yn − y∗∥
≤ m

(
∥xn − x∗∥ + ∥yn − y∗∥

)
= m

∥∥(xn, yn) − (x∗, y∗)
∥∥.

It is easy to see that∥∥(xn, yn) − (x∗, y∗)
∥∥ ≤ mn

∥∥(x0, y0) − (x∗, y∗)
∥∥.
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Since 0 < m < 1, we have∥∥(xn, yn) − (x∗, y∗)
∥∥ → 0 (n → ∞),

that is, xn → x∗ and yn → y∗ as n → ∞. This completes the proof. ¤

From Theorems 3.1 and 3.2, we have the following result.

Theorem 3.3. Suppose that T, S : X ×X → X are nonlinear mappings such
that T is γ11-Lipschitz continuous with respect to the first argument and γ12-
Lipschitz continuous with respect to the second argument, S is γ21-Lipschitz
continuous with respect to the second argument and γ22-Lipschitz continuous
with respect to the first argument. Let g : X → X be α1-Lipschitz continuous,
β1-strongly monotone and β11-strongly monotone with respect to T for the first
argument. Let h : X → X be α2-Lipschitz continuous, β2-strongly monotone
and β21-strongly monotone with respect to S for the second argument. If

0 < m11 + m12 < 1, 0 < m21 + m22 < 1,

where

m11 =
√

α2
1 − 2ρ1β11 + ρ2

1γ
2
11 +

√
1 − 2β1 + α2

1 m12 = ρ2γ22,

m21 =
√

α2
2 − 2ρ2β21 + ρ2

2γ
2
21 +

√
1 − 2β2 + α2

2 m22 = ρ1γ12,

then the system of variational inequalities (1.5) has a unique solution (x∗, y∗) ∈
X × X. Moreover, for any given point (x0, y0) ∈ X × X, let xn+1 = PK1 [g(xn) − ρ1T (xn, yn)] + xn − g(xn),

yn+1 = PK2 [h(yn) − ρ2S(xn, yn)] + yn − h(yn).

Then xn → x∗ and yn → y∗ as n → ∞.
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