• 제목/요약/키워드: System boundary

검색결과 3,712건 처리시간 0.041초

Higher Order Wall Boundary Conditions for Incompressible Flow Simulations

  • Nishida Hidetoshi
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 The Fifth Asian Computational Fluid Dynamics Conference
    • /
    • pp.61-62
    • /
    • 2003
  • In this paper, the new higher order wall boundary conditions are proposed for solving the incompressible flows. The square driven cavity flows are simulated by using the variable order method of lines with the present wall boundary conditions. The variable order method of lines is constructed by the spatial discretization, i.e., the variable order proper convective scheme for convective terms and the modified differential quadrature method for diffusive terms, and time integration. The 2nd, 4th, and 6th order solutions are presented and these results show this higher order boundary conditions are very promising for the incompressible flow simulations.

  • PDF

SIMPLE Algorithm기반의 비압축성 Navier-Stokes Solver와 Immersed Boundary Method (IMPLEMENTATION OF IMMERSED BOUNDARY METHOD TO INCOMPRESSIBLE NAVIER-STOKES SOLVER USING SIMPLE ALGORITHM)

  • 김건홍;박승오
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.397-403
    • /
    • 2010
  • The Immersed boundary method(IBM) is one of CFD techniques which can simulate flow field around complex objectives using simple Cartesian grid system. In the previous studies the IBM has mostly been implemented to fractional step method based Navier-Stokes solvers. In these cases, pressure buildup near IB was found to occur when linear interpolation and stadard mass conservation is used and the interpolation scheme became complicated when higher order of interpolation is adopted. In this study, we implement the IBM to an incompressible Navier-Stokes solver which uses SIMPLE algorithm. Bi-linear and quadratic interpolation equations were formulated by using only geometric information of boundary to reconstruct velocities near IB. Flow around 2D circular cylinder at Re=40 and 100 was solved by using these formulations. It was found that the pressure buildup was not observed even when the bi-linear interpolation was adopted. The use of quadratic interpolation made the predicted aerodynamic forces in good agreement with those of previous studies.

  • PDF

상단 등온조건을 갖는 이차원 슬랩에서의 경계위치 역추정을 위한 유한요소 정식화 (A Finite Element Formulation for the Inverse Estimation of an Isothermal Boundary in Two-Dimensional Slab)

  • 김선경;허훈;이우일
    • 대한기계학회논문집B
    • /
    • 제25권6호
    • /
    • pp.829-836
    • /
    • 2001
  • A dependable boundary reconstruction technique is proposed. The finite element method is used for the analysis of the direct heat conduction problem to realize the deformable grid system. An appropriate strategy for grid update is suggested. A complete sensitivity analysis is performed to obtain the derivatives required for restoration of the optimal boundary. With the result of the sensitivity analysis, the unknown boundary is sought using the sequential quadratic programming. The method is applied to reconstruction of boundaries with sinusoidal, step, and cavity form. The overall performance of the proposed method is examined by comparison between the estimated the exact boundaries.

수면파와 저면흡수가 고려된 댐 지진응답해석을 위한 전달경계 (Transmitting Boundary for the Seismic Response Analysis of Dam including surface sloshing and Bottom Absorption)

  • 김재관
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1998년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Spring 1998
    • /
    • pp.180-187
    • /
    • 1998
  • One of the major difficulties in the seismic analysis of a dam-reservoir system is the treatment of the energy radiation in the upstream direction of the reservoir. In this paper a new transmitting boundary is presented that can model properly the radiation of energy in the far field direction of a semi-infinite reservoir with constant depth. In the newly developed method, effects of surface wave motion are taken into account and the reservoir-foundation interaction is approximately accounted for with an absorbing boundary condition. If a dam has vertical upstream face and the infinitely long reservoir maintains constant depth, then the proposed transmitting boundary can be directly coupled with the model of dam body. In present study, the dam body is assumed to behave elastically and modeled by finite element method. Seismic responses of a dam model are investigated using the newly developed transmitting boundary.

  • PDF

Matrix-based Chebyshev spectral approach to dynamic analysis of non-uniform Timoshenko beams

  • Wang, W.Y.;Liao, J.Y.;Hourng, L.W.
    • Structural Engineering and Mechanics
    • /
    • 제39권5호
    • /
    • pp.669-682
    • /
    • 2011
  • A Chebyshev spectral method (CSM) for the dynamic analysis of non-uniform Timoshenko beams under various boundary conditions and concentrated masses at their ends is proposed. The matrix-based Chebyshev spectral approach was used to construct the spectral differentiation matrix of the governing differential operator and its boundary conditions. A matrix condensation approach is crucially presented to impose boundary conditions involving the homogeneous Cauchy conditions and boundary conditions containing eigenvalues. By taking advantage of the standard powerful algorithms for solving matrix eigenvalue and generalized eigenvalue problems that are embodied in the MATLAB commands, chebfun and eigs, the modal parameters of non-uniform Timoshenko beams under various boundary conditions can be obtained from the eigensolutions of the corresponding linear differential operators. Some numerical examples are presented to compare the results herein with those obtained elsewhere, and to illustrate the accuracy and effectiveness of this method.

양단 경계 조건이 있는 리카티 식을 가진 선형 레규레이터 (Linear Quadratic Regulators with Two-point Boundary Riccati Equations)

  • 권욱현
    • 대한전자공학회논문지
    • /
    • 제16권5호
    • /
    • pp.18-26
    • /
    • 1979
  • 본 논문에서는 algebraic matrix Lyapunov equations과 a1gebraic matrix Riccati equations에 관하여 잘 알려져 있는 중요한 결과를 확장한다. 본 연구는 Matrix 미분 방정식에서 양단 경계조건이 존재하는 문제를 다루며 여기에서 얻어지는 결과는 기존하고 있는 결과를 포함하게 된다. 특히 선형 시스템이 periodic feedback gain control로 안정화되는 필요충분조건을 구하며, two-point boundary Riccati equations의 해를 쉽게 구하는 반복 계산방법을 제시한다. 또한 interalwise reeceding horizon을 이용한 새로운 periodic feedback gain control이 시스템을 안전화시켜줌을 보여준다.

  • PDF

A boundary element method based on time-stepping approximation for transient heat conduction in anisotropic solids

  • Tanaka, Masa;Matsumoto, T.;Yang, Q.F.
    • Structural Engineering and Mechanics
    • /
    • 제4권1호
    • /
    • pp.61-72
    • /
    • 1996
  • The time-stepping boundary element method has been so far applied by the authors to transient heat conduction in isotropic solids as well as in orthotropic solids. In this paper, attempt is made to extend the method to 2-D transient heat conduction in arbitrarily anisotropic solids. The resulting boundary integral equation is discretized by means of the boundary element with quadratic interpolation. The final system of equations thus obtained is solved by advancing the time step from the given initial state to the final state. Through numerical compuation of a few examples the potential usefulness of the proposed method is demonstrated.

Non linear vibrations of stepped beam system under different boundary conditions

  • Ozkaya, E.;Tekin, A.
    • Structural Engineering and Mechanics
    • /
    • 제27권3호
    • /
    • pp.333-345
    • /
    • 2007
  • In this study, the nonlinear vibrations of stepped beams having different boundary conditions were investigated. The equations of motions were obtained using Hamilton's principle and made non dimensional. The stretching effect induced non-linear terms to the equations. Forcing and damping terms were also included in the equations. The dimensionless equations were solved for six different set of boundary conditions. A perturbation method was applied to the equations of motions. The first terms of the perturbation series lead to the linear problem. Natural frequencies for the linear problem were calculated exactly for different boundary conditions. Second order non-linear terms of the perturbation series behave as corrections to the linear problem. Amplitude and phase modulation equations were obtained. Non-linear free and forced vibrations were investigated in detail. The effects of the position and magnitude of the step, as well as effects of different boundary conditions on the vibrations, were determined.

Shear deformation effect in flexural-torsional buckling analysis of beams of arbitrary cross section by BEM

  • Sapountzakis, E.J.;Dourakopoulos, J.A.
    • Structural Engineering and Mechanics
    • /
    • 제35권2호
    • /
    • pp.141-173
    • /
    • 2010
  • In this paper a boundary element method is developed for the general flexural-torsional buckling analysis of Timoshenko beams of arbitrarily shaped cross section. The beam is subjected to a compressive centrally applied concentrated axial load together with arbitrarily axial, transverse and torsional distributed loading, while its edges are restrained by the most general linear boundary conditions. The resulting boundary value problem, described by three coupled ordinary differential equations, is solved employing a boundary integral equation approach. All basic equations are formulated with respect to the principal shear axes coordinate system, which does not coincide with the principal bending one in a nonsymmetric cross section. To account for shear deformations, the concept of shear deformation coefficients is used. Six coupled boundary value problems are formulated with respect to the transverse displacements, to the angle of twist, to the primary warping function and to two stress functions and solved using the Analog Equation Method, a BEM based method. Several beams are analysed to illustrate the method and demonstrate its efficiency and wherever possible its accuracy. The range of applicability of the thin-walled theory and the significant influence of the boundary conditions and the shear deformation effect on the buckling load are investigated through examples with great practical interest.

탄성체의 경계 하중을 구하기 위한 역경계요소법 (An Inverse Boundary Element Method for Finding Boundary Tractions of an Elastic Body)

  • 이상훈;김현규
    • 한국전산구조공학회논문집
    • /
    • 제22권3호
    • /
    • pp.223-229
    • /
    • 2009
  • 대부분의 구조해석 문제는 외부하중에 대하여 구조물의 변형과 응력을 구하게 된다. 하지만 많은 분야에서 표면 트랙션과 내부 응력을 측정변위로 부터 구하기 위한 역문제 해석이 필요하게 된다. 본 연구에서는 구하고자 하는 트랙션 영역과 그와는 다른 영역의 변위를 측정하여 미지의 트랙션을 평가하는 역시스템을 경계요소법을 사용하여 수식화하였다. 본 연구에서 제시한 역경계요소법을 사용하여 측정변위의 작은 노이즈와 측정위치의 영향을 분석하였다.