• Title/Summary/Keyword: Synthetic water

Search Result 1,037, Processing Time 0.037 seconds

Enhancing the Performance of Polypropylene Fiber Reinforced Cementitious Composite Produced with High Volume Fly Ash (폴리프로필렌 섬유로 보강된 하이볼륨 플라이애시 시멘트 복합재료의 성능 향상 기법)

  • Lee, Bang Yeon;Bang, Jin Wook;Kim, Yun Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.118-125
    • /
    • 2013
  • The synthetic fibers including Polyvinyl alcohol and Polyethylene fibers have been successfully used in the manufacture of high ductile fiber reinforced cementitious composites. Polypropylene (PP) fiber has also been used in composites, not for the purpose of achieving a high level of tensile ductility but to improve the fire resistance performance of concrete exposed to high temperatures. This paper discusses the method for enhancing the performance of composites supplemented with PP fiber. Five types of mixture proportions were designed with high volume fly ash for testing the performance of composites. Type I cement and fly ash F were used as binding materials. The water-to-binder ratio was 0.23~0.25, and the amount of PP fiber used was 2 vol%. Polystyrene bead were also used to increase the tensile ductility of composites. A series of experiments including slump, density, compression and uniaxial tension tests were performed to evaluate the performance of cementitious composites supplemented with PP fiber. From the test results, it was exhibited that the performance of composites supplemented with PP fiber can be enhanced by adopting the mechanics and statistics theory.

A Study on the Variation of Physical Properties on the Secondary Product of Cement by Using Crushed Stone Powder (폐석분을 사용한 시멘트 2차 제품의 물리적 특성에 관한 연구)

  • Park, Ji-Sun;Lee, Sea-Hyun;Song, Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.103-111
    • /
    • 2012
  • One of the basic physical properties of the hardened cement paste, the rigidity, is deteriorated during concrete matrix forming, depending on the replacement rate of the crushed stone powder, and due to drying shrinkage. Therefore, the concrete containing crushed stone powder has been limitedly used as non-structural construction material. To improve these disadvantages, a hydrothermal reaction employing method can be considered. High-temperature and high-pressure water is involved in the hydrothermal reaction in the mixing with specific materials. The rigidity improving mechanism is related to the synthesis of calcium silicate. The calcium silicate is produced through reaction between calcium compounds and the silicic acid. Various kinds of calcium silicate can be produced depending on the CaO/$SiO_2$ mole ratio, the temperature of the hydrothermal synthesis, the pressure, and the reaction time. The product of the synthesis mechanism, tobermorite crystal, plays a pivotal role for the rigidity reinforcement. The crushed stone powder, analyzed in this study, contains 50 to 60% of $SiO_2$ and 10 to 20% $Al_2O_3$. The composite rate is appropriate to create the tobermorite crystal through formation of hardened cement matrix under the hydrothermal synthetic conditions and with the CaO in the cement. Moreover, further reinforcement was promoted using the property of material under the identical density through promoting the formation of tobermorite crystal.

  • PDF

Growth Characteristic, Mono-strain Mass Culture and Antioxidant Effects of Two Benthic Diatoms Amphora coffeaeformis and Achnanthes longipes from Korea

  • Abu Affan, Md.;Karawita, Rohan;Jeon, You-Jin;Lee, Joon-Baek;Kang, Do-Hyung;Park, Heung-Sik
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.2 no.3
    • /
    • pp.174-186
    • /
    • 2007
  • Amphora coffeaeformis and Achnanthes longipes are commonly found as dominant benthic microalgae in Jeju coastal water throughout the year. In order to investigate pharmaceutical uses of these diatoms, each single species was isolated with micropipette under phase contrast microscope and subcultured with synthetic seawater media which was enriched with F/2 media, trace metal solution and $Na_2SiO_3$). Growth characteristics of these species were also determined with different combination of salinity, nutrients concentration and temperature. Thereafter, mass culture of each species was done based on the maximum growth condition. Biomass was collected after two weeks of mass culture and freeze dried for antioxidant study. The antioxidant properties of different fractions (n-hexane, chloroform and ethylacetate) obtained by solvent fractionation of 80% methanolic extract of two microalgae were investigated for free radical, reactive oxygen species scavenging (Super oxide, Hydrogen peroxide, Hydroxyl radical and Nitric oxide), metal chelating and lipid peroxidation inhibition activities. All fractions of A. longipes showed higher $DPPH^{\cdot}$ (free radical) scavenging activities (n-hexane: 89.0%, Chloroform: 76.0%, Ethylacetate: 66.0%, Methanol: 90.6% and aqueous residue: 63.0%). N-hexane fraction of A. longipes showed significantly higher activity (49.0%) on nitric-oxide. Ethylacetate fraction of A. longipes and aqueous residue of A. coffeaeformis exhibited 64.0% and 75.6% metal chelating activity which was higher than commercial antioxidants (${\alpha}$-tocopherol: 18.0% and BHT: 16.0%). The n-hexane fraction of A. coffeaeformis had 67.5% activity on $DPPH^{\cdot}$. Chloroform and n-hexane fractions of A. coffeaeformis exhibited 46.2% and 47.6% $H_2O_2$ scavenging effects which were closely similar to commercial antioxidants (${\alpha}$-tocopherol: 49.2% and BHT: 58.6%). Chloroform and ethylacetate fractions of A. longipes and fraction of n-hexane and chloroform of A. coffeaeformis showed better lipid peroxidation activities than ${\alpha}$-tocopherol. These data suggest that both organic and aqueous fractions have good antioxidative compounds with different antioxidant properties.

  • PDF

A Study on the Treatment of Heavy Metal in Wastewater by Redox Reaction of Cu-Zn Metal Alloy and Adsorption reaction of Al-Silicate (Cu-Zn 금속합금의 산화 환원반응과 Al-Silicate의 흡착반응을 이용한 폐수 중 중금속처리에 관한 연구)

  • Lee, Soo-Jeong;Kim, Jong Hwa;Song, Ju Yeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.441-448
    • /
    • 2016
  • Heavy metal removal study is conducted from synthetic waste water by reduction and oxidation(redox) reaction of Cu-Zn metal alloy and adsorption reaction of aluminium silicate. Heavy metal whose ionization tendency is smaller than zinc are reducted in an aqueous solution, and the concentration of ionized zinc is reduced by adsorption reaction. The average diameter of metal alloy micro fiber is about $200{\mu}m$, and the surface area is wide enough to get equilibrium in a single cycle treatment. A single cycle treatment of redox reaction of Cu-Zn metal alloy, could remove 100.0 % of Cr(III), 98.0 % of Hg, 92.0 % of Sn and 91.4 % of Cu respectively. An ionization tendency of chromium is very close to zinc, but removal efficiency of chromium by redox reaction is significant. This result shows that trivalent chromium ion is expected to generate hydroxide precipitation with $OH^-$ ion generated by redox reaction. Zinc ion generated by redox reaction is readily removed by adsorption reaction of aluminium silicate in a single cycle treatment. Other heavy metal components which are not perfectly removed by redox reaction also showed very high removal efficiency of 98.0 % or more by adsorption reaction. Aluminium ion is not increased by adsorption reaction of aluminium silicate. That means heavy metal ion removal mechanism by adsorption reaction is turned out to be not an ion exchange reaction, but an adsorption reaction.

Efficient Cyclization of Substituted Diphenols : Application to the Synthesis of Sulforhodamine B (치환 다이페놀의 효율적 고리화 반응: 설퍼로다민B의 합성에의 응용)

  • Park, Min Kyun;Shim, Jae Jin;Ra, Choon Sup
    • Clean Technology
    • /
    • v.21 no.2
    • /
    • pp.102-107
    • /
    • 2015
  • Rhodamine dyes are widely used as fluorescent probes because of their excellent photophysical properties, such as high extinction coefficients, excellent quantum yields, great photostability, relatively long emission wavelengths. A great synthetic effort has been focused on developing efficient and practical procedures to prepare rhodamine derivatives, because for most applications the probe must be covalently linked to another (bio)molecule or surface. Sulforhodamine B is one of the most used rhodamine dyes for this purpose, because it carries two sulfoxy functions which can be easily utilized for binding with other molecules. Recently, we needed an expedient, practical synthesis of sulforhodamine derivatives. We found the existing procedure for obtaining those compounds unsatisfactory, particularly, with the cyclization process of the dihydroxytriarylmethane (1) to produce the corresponding xanthene derivative (2). We report here our findings, which represent modification of the existing literature procedure and provide access to the corresponding xanthene derivative (2) in a high yield. Use of methanol as a co-solvent was found quite effective to prohibit the water molecule produced during the cyclization reaction from retro-cyclizing back to the starting dihydroxytriarylmethane and the yield of the cyclization was increased (up to 84% from less than 20%). The reaction temperature was significantly lowered (80 vs. 135 ℃). Thus, the reaction proceeds in a higher yield and energy-saving manner where the use of reactants and the production of chemical wastes is minimized.

Geotomography Applied for the Integrity Test of Cast-in-place Piles (현장타설콘크리트말뚝의 건전도 평가를 위한 geotomography의 적용 연구)

  • Lee Jae-Kyung;Park Jong-Nam
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.5-12
    • /
    • 2005
  • Recently, geophysical prospecting methods have played very important roles in civil and environmental engineering problems. Technical advances in geophysical instruments and computer system made it possible to get underground images with very high resolution far purposes to resolve those problems. It was possible partly due to ever increasing demand for development of technologies needed to precisely detect polluted areas and prevent ground-related accidents. Based on the same demand, integrity tests of cast-in place piles draw more attention and development of accurate test procedures is required. Ultrasonic methods is one of most advanced non-destructive procedures. In the paper, a geotomography method is employed for the cast-in place pile integrity test using ultrasonic waves. The image of pile interior is scanned and scrutinized far better and more accurate decision in the cast-in place pile integrity. In this study, we firstly examined the accuracy fur tomography program with idealized synthetic models built in water tank: their position and size were changed in the tank and each case was studied. In the next stage, real concrete pile models were fabricated and images of anomaly areas inside the pile were scanned to successfully locate those areas.

EFFECTS OF FLUORIDE MOUTHRINSE ON CELL ACTIVITY OF GINGIVAL FIBROBLASTS OF CHILDREN (불소양치용액이 소아 치은 섬유아세포의 세포활성에 미치는 영향에 관한 연구)

  • Lee, Dong-Hyun;Lee, Kwang-Hee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.24 no.1
    • /
    • pp.204-219
    • /
    • 1997
  • The use of fluoride is one of the most effective methods for caries prevention. Fluoridation of public water supply has been recognized, for many years, as an effective way to reduce dental caries. The fluoride supplement has been recommended when the natural fluoride was unavailable or below the optimal range. However the mechanism of caries prevention by fluoride has not yet been clarified and it is well known that an overdose of fluoride results inacute and chronic toxicity, especially dental fluorosis. Fluoride mouthrinsing solution is widely used in dentistry due to its effectiveness in carrying anticariogenic action. Understanding the effects of fluoride mouthrinsing solution on human gingival fibroblasts will provide the safety rationale for its use during the caries preventive therapy. The purpose of this study was to evaluate the cytotoxic effect of fluoride mouthrinsing solution on the human gingival fibroblast in vitro. The human gingival fibroblasts were cultured from healthy gingiva on the extracted deciduous teeth of children. Cells were inoculated into a 24-well plate with $1{\times}10^4cells/well$ of medium at $37^{\circ}C$, 100% humidity, 5% $CO_2$ incubator for 24 hours. And the cells were counted by using the hemocytometer at each designed study. Human gingival fibroblasts were cultured in growth medium after one minute application range of 0.02%-0.2% NaF solution and 0.1% $SnF_2$ solution. The cells used in this study were between fifth to eighth passage number. The cell morphology was examined by inverted microscope and cell proliferation was measured by incorporating $[^3H]$-thymidine into DNA. DNA synthesis by human gingival fibroblasts was assessed by $[^3H]$-thymidine uptake assays while the cell activity was measured by MTT assay. Each concentrated fluoride mouthrinsing solution was estimated for its biocompatability with fibroblasts by the tissue culture technique. The results of this study were as follows : 1. It was observed that at 0.05%, 0.2% NaF mouthrinsing solution the cytoplasmic processes became globular. When 0.1% $SnF_2$ mouthrinsing solution was applied, the cytoplasmic process and cell morphology were disappeared. 2. DNA synthetic activity was reduced regardless of the concentration of the fluoride mouthrinsing solution. However, the result is statistically insignificant except 0.1% $SnF_2$ mouthrinsing solution(p<0.05). 3. Our results indicate that 0.02%, 0.05% concentrations of NaF mouthrinsing solution caused minimal cytotoxicity. But 0.2% NaF and 0.1% $SnF_2$ concentration were a significant difference between the cell activity in the experimental group and control group (p<0.05). 4. After appling 0.05% & 0.02% NaF fluoride mouthrinsing solution, cell activity was restored to the control groups level according to incubating time. The results suggest that direct exposure to fluoride solution inhibits gingival fibroblast activity. Therefore, for the most effective use of fluoride use, lowering the concentration of fluoride mouthrinsing is advisable because it maintains biocompatability and free ion in the oral fluid.

  • PDF

Effect of the Environmental and Nutritional Conditions on the Growth of Marine Microalga Isochrysis Galbana Parke (해양 미세조류 Isochrysis galbana Parke 성장에 대한 환경 및 영양 조건의 영향)

  • 오유관;박성훈
    • KSBB Journal
    • /
    • v.11 no.3
    • /
    • pp.303-310
    • /
    • 1996
  • The marine microalga Isochrysis galbana Parke was studied to optimize its growth conditions in flask culture. Important medium components studied include nitrogen source, buffer, trace elements and vitamins. Environmental conditions include pH, temperature, light intensity, mixing extent and working volume. The medium prepared from natural sea-waters gave a higher final cell density than the medium prepared from synthetic sea-water Nitrate was a better source than ammonium. In the range of 0.4∼2mM, the final cell density was proportional to the initial nitrate concentration and the cell yield was estimated to be 8.5g dry cell wt/g N. For phosphate, optimal growth was observed in 0.1∼1.0mM but a considerable variation in pH was resulted. The addition of Tris at 5mM or 7mM could stabilize the medium pH, but this significantly reduced both growth rate and final cell density, The effect of trace elements and vitamins was negligible. Optimal temperature and initial pH were $20^{\circ}C$ and 8. When the intensity of incident light was varied in the range of 400∼2100 lux, the growth rate increased from 10mL to 70mL, the final cell density decreased although the initial growth rate did not change. Optimal agitation speed was 100rpm when working volume was 30mL. With optimal conditions, the maximum specific growth rate obtained was 0.021hr-1 and the final cell density was 1.1g/L.

  • PDF

Characterization and Organic Hydrocarbons Degradation Potential of Euryhaline Marine Microorganism, Bacillus sp. EBW4 Isolated from Polychaete (Perinereis aibuhitensis) (갯지렁이(Perinereis aibuhitensis)에서 분리한 광염성 해양 미생물 Bacillus sp. EBW4의 특성 및 유기물 분해능 분석)

  • Shin, Seyeon;Yundendorj, Khorloo;Lee, Sang-Suk;Lee, Dong-Heon;Kang, Kyoung-Ho;Kahng, Hyung-Yeel
    • Korean Journal of Microbiology
    • /
    • v.49 no.1
    • /
    • pp.38-45
    • /
    • 2013
  • In this study, euryhaline marine microorganism, Bacillus sp. strain EBW4 isolated from polychaete (Perinereis aibuhitensis) of Suncheon Bay was physiologically, biochemically and genetically characterized. Based on 16S rRNA sequence, EBW14 was found to share 98.25% similarity with Bacillus hemicentroti $JSM076093^T$, 97.96% similarity with Bacillus hwajinponensis SW-$72^T$ and 96.28% similarity with B. algicoa $KMM3737^T$, respectively. The temperature range for the growth of strain EBW4 was $4-40^{\circ}C$, NaCl concentration range 0-17% and pH range pH 5-9, revealing that EBW4 was euryhaline bacterium. Major fatty acids in strain EBW4 were composed of anteiso $C_{15:0}$ (48.2%), iso $C_{16:0}$ (12.1%), anteiso $C_{17:0}$ (11.6%) and iso $C_{14:0}$ (9.4%). EBW4 was found to have DNase, amylase, protease and lipase for the degradation of macromolecules such as DNA, carbohydrates, proteins, lipids, etc. The enzyme activities of alkaline phosphatase, esterase (C4), leucine arylamidase and ${\alpha}$-chymotrypsin were also found in strain EBW4. Analysis of the biodegradation ability of EBW4 for organic hydrocarbons under different salinity conditions using synthetic water waste revealed that EBW4 exhibited the ability to degrade organic hydrocarbons very quickly, suggesting strain EBW4 may be a good candidate for the application to various industries.

Preparation and Characteristics of Partially Fluorinated-Sulfonated Poly(biphenylene-co-sulfone)ether Membranes for Polymer Electrolyte Membrane Fuel Cell (고분자전해질 연료전지용 부분 불소계 설폰화 Poly(biphenylene-co-sulfone)ether 막의 제조와 특성)

  • Park, Jae-Wan;Chang, Bong-Jun;Kim, Jeong-Hoon;Lee, Yong-Taek
    • Polymer(Korea)
    • /
    • v.34 no.2
    • /
    • pp.137-143
    • /
    • 2010
  • A series of partially fluorinated, sulfonated poly(biphenylene-co-sulfone)ether containing perfluorocyclobutane(PFCB) groups were prepared for fuel cell applications through three synthetic steps: synthesis of trifluorovinylether-terminated monomers, thermal cycloaddition and post-sulfonation. Two kinds of trifluorovinylether-terminated monomers were synthesized and statistically copolymerized via thermal cycloaddition to obtain a series of polymers containing 20-60 mol% of biphenyl units(PBS-X). The post-sulfonation of PBS-X was carried out using chlorosulfonic acid(CSA) to obtain copolymers with various sulfonation levels(SPBS-X). All the synthesized compounds, monomers and polymers were characterized by $^1H$-NMR, $^{19}F$-NMR and FT-IR. It was confirmed that the ion exchange capacity(IEC), water uptake and ion conductivity of SPBS-X increased with the increment of sulfonated biphenyl units. Particularly, SPBS-60 showed higher ion conductivity compared to Nafion$^{(R)}$-115 at 25~80 $^{\circ}C$.