DOI QR코드

DOI QR Code

Characterization and Organic Hydrocarbons Degradation Potential of Euryhaline Marine Microorganism, Bacillus sp. EBW4 Isolated from Polychaete (Perinereis aibuhitensis)

갯지렁이(Perinereis aibuhitensis)에서 분리한 광염성 해양 미생물 Bacillus sp. EBW4의 특성 및 유기물 분해능 분석

  • Shin, Seyeon (Department of Environmental Education, Sunchon National University) ;
  • Yundendorj, Khorloo (Department of Environmental Education, Sunchon National University) ;
  • Lee, Sang-Suk (Department of Animal Science and Technology, Sunchon National University) ;
  • Lee, Dong-Heon (The Research Institute for Basic Sciences, Jeju National University) ;
  • Kang, Kyoung-Ho (Department of Aquaculture, Chonnam National University) ;
  • Kahng, Hyung-Yeel (Department of Environmental Education, Sunchon National University)
  • 신세연 (순천대학교 환경교육과) ;
  • ;
  • 이상석 (순천대학교 동물자원학과) ;
  • 이동헌 (제주대학교 기초과학연구소) ;
  • 강경호 (전남대학교 수산양식학부) ;
  • 강형일 (순천대학교 환경교육과)
  • Received : 2013.01.28
  • Accepted : 2013.02.12
  • Published : 2013.03.31

Abstract

In this study, euryhaline marine microorganism, Bacillus sp. strain EBW4 isolated from polychaete (Perinereis aibuhitensis) of Suncheon Bay was physiologically, biochemically and genetically characterized. Based on 16S rRNA sequence, EBW14 was found to share 98.25% similarity with Bacillus hemicentroti $JSM076093^T$, 97.96% similarity with Bacillus hwajinponensis SW-$72^T$ and 96.28% similarity with B. algicoa $KMM3737^T$, respectively. The temperature range for the growth of strain EBW4 was $4-40^{\circ}C$, NaCl concentration range 0-17% and pH range pH 5-9, revealing that EBW4 was euryhaline bacterium. Major fatty acids in strain EBW4 were composed of anteiso $C_{15:0}$ (48.2%), iso $C_{16:0}$ (12.1%), anteiso $C_{17:0}$ (11.6%) and iso $C_{14:0}$ (9.4%). EBW4 was found to have DNase, amylase, protease and lipase for the degradation of macromolecules such as DNA, carbohydrates, proteins, lipids, etc. The enzyme activities of alkaline phosphatase, esterase (C4), leucine arylamidase and ${\alpha}$-chymotrypsin were also found in strain EBW4. Analysis of the biodegradation ability of EBW4 for organic hydrocarbons under different salinity conditions using synthetic water waste revealed that EBW4 exhibited the ability to degrade organic hydrocarbons very quickly, suggesting strain EBW4 may be a good candidate for the application to various industries.

본 연구에서는 연안갯벌 갯지렁이(Perinereis aibuhitensis)에서 분리한 광염성 미생물, Bacillus sp. EBW4의 특성과 다양한 환경조건에서 유기물 분해능을 분석하였다. 16S rRNA 염기서열에 기초하여 동정한 결과, 균주 EBW4는 Bacillus hemicentroti $JSM076093^T$와 98.3%, Bacillus hwajinponensis SW-$72^T$와 97.96% 그리고 Bacillus algicoa $KMM3737^T$와 96.28%의 상동성을 보였다. EBW4의 생장 가능한 온도 범위는 $4-40^{\circ}C$, 염분도 범위는 0-17%, pH 범위는 5-9로 나타나 EBW4는 광염성 균주로 밝혀졌다. EBW4의 세포막을 구성하는 주요 지방산으로는 anteiso $C_{15:0}$, iso $C_{16:0}$, anteiso $C_{17:0}$, iso $C_{14:0}$ 등으로 각각 48.2, 12.1, 11.6, 9.4% 비율로 나타났다. EBW4는 탄수화물, 단백질, 지방 등 다양한 고분자 유기물을 분해할 수 있는 DNase, amylase, protease, lipase 등의 효소 활성뿐만 아니라, alkaline phosphatase, esterase (C4), leucine arylamidase 그리고 ${\alpha}$-chymotrypsin 효소활성도 가지고 있었다. 다양한 염분 농도 조건에서 합성폐수를 이용한 실험에서 EBW4은 조사한 모든 범위의 염분 조건에서도 유기물 분해능이 우수하였다.

Keywords

References

  1. Arena, A., Maugeri, T.L., Pavone, B., Iannello, D., Gugliandolo, C., and Bisignano, G. 2006. Antiviral and immunoregulatory effect of a novel exopolysaccharide from a marine thermotolerant Bacillus licheniformis. Int. Immunopharmacol. 6, 8-13. https://doi.org/10.1016/j.intimp.2005.07.004
  2. Bagheri, T., Hedayati, S.A., Yavari, V., Alizade, M., and Farzanfar, A. 2008. Growth, survival and gut microbial load of rainbow trout (Onchorhynchus mykiss) fry given diet supplemented with probiotic during the two months of first feeding. Turk. J. Fish. Aquat. Sci. 8, 43-48.
  3. Banerjee, S., Devaraja, T.N., Shariff, M., and Yusoff, F.M. 2007. Comparison of four antibiotics with indigenous marine Bacillus spp. in controlling pathogenic bacteria from shrimp and Artemia. J. Fish Dis. 30, 383-389. https://doi.org/10.1111/j.1365-2761.2007.00819.x
  4. Bishop, P.J. and Neuman, G. 1970. The history of the Ziehl-Neelsen stain. Tubercle. 51, 196. https://doi.org/10.1016/0041-3879(70)90073-5
  5. Bryan, G.W. and Gibbs, P.E. 1987. Polychaete common ragworms as indicators of heavy-metal availability in marine deposits, pp. 37-39. In Capuzzo, J.M. and Kester, D.R. (eds.), Biological Processes and Wastes in the Oceans. Robert E Krieger Publishing Co., Malabar, Florida, USA.
  6. Campos, L.C., Su, M.F.J., Graham, N.J.D., and Smith, S.R. 2002. Biomass development in slow sand filters. Water Res. 36, 4543-4551. https://doi.org/10.1016/S0043-1354(02)00167-7
  7. Chen, Y.G., Zhang, Y.Q., He, J.W., Klenk, H.P., Xiao, J.Q., Zhu, H.Y., Tang, S.K., and Li, W.J. 2011. Bacillus hemicentroti sp. nov., a moderate halophile isolated from a sea urchin. Int. J. Syst. Evol. Microbiol. 61, 2950-2955. https://doi.org/10.1099/ijs.0.026732-0
  8. Chun, J., Lee, J.H., Jung, Y., Kim, M., Kim, S., Kim, B.K., and Lim, Y.W. 2007. EzTaxon : a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evolution Microbiol. 57, 2259-2261. https://doi.org/10.1099/ijs.0.64915-0
  9. Davidson, J., Helwig, N., and Summerfelt, S.T. 2008. Fluidized sand biofilters used to remove ammonia, biochemical oxygen demand, total coliform bacteria, and suspended solids from an intensive aquaculture effluent. Aquacult. Engineer. 39, 6-15. https://doi.org/10.1016/j.aquaeng.2008.04.002
  10. Felsenstein, J. 1985. Confidence limits on phylogenies : an approach using the bootstrap. Evolution 39, 783-791. https://doi.org/10.2307/2408678
  11. Fourcy, D., Jumel, A., Heydorff, M., and Lagadic, L. 2002. Esterases as biomarkers in Nereis (Hediste) diversicolor exposed to temephos and Bacillus thuringiensis var. israelensis used for mosquito control in coastal wetlands of Morbihan (Brittany, France). Mar. Environ. Res. 54, 755-759. https://doi.org/10.1016/S0141-1136(02)00153-8
  12. Fujioka, Y., Shimoda, T., and Srithong, C. 2007. Diversity and community structure of macrobenthic fauna in shrimp aquaculture ponds of the Gulf of Thailand. Jap. Agric. Res. Quart. 41, 163-172. https://doi.org/10.6090/jarq.41.163
  13. Gatesoupe, F.J. 1999. The use of probiotics in aquaculture. Aquacult. 180, 147-165. https://doi.org/10.1016/S0044-8486(99)00187-8
  14. Ghosh, K., Sen, S.K., and Ray, A.K. 2002. Characterization of bacilli isolated from the gut of rohu, Labeo rohita fingerlings and its significance in digestion. J. Appl. Aquacult. 12, 33-42. https://doi.org/10.1300/J028v12n03_04
  15. Gili, J.M. and Coma, R. 1998. Benthic suspension feeders : their paramount role in littoral marine food webs. Trends Ecol. Evol. 13, 316-321. https://doi.org/10.1016/S0169-5347(98)01365-2
  16. Gomez-Gil, B., Roque, A., and Turnbull, J.F. 2000. The use and selection of probiotic bacteria for use in the culture of larval aquatic organisms. Aquacult. 191, 259-270. https://doi.org/10.1016/S0044-8486(00)00431-2
  17. Guo, H., Luo, S., Chen, L., Xiao, X., Xi, Q., Wei, W., Zeng, G., Liu, C., Wan, Y., and Chen, J. 2010. Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14, Bioresour. Technol. 101, 8599-8605. https://doi.org/10.1016/j.biortech.2010.06.085
  18. Guncheva, M. and Zhiryakova, D. 2011. Catalytic properties and potential applications of Bacillus lipases. J. Mol. Cat. B Enzym. 68, 1-21. https://doi.org/10.1016/j.molcatb.2010.09.002
  19. Hall, T. 2007. BioEdit. Biological sequence alignment editor for Win95/98/NT/2K/XP. Ibis Biosciences, Carlsbad, CA, USA.
  20. Hovda, M.B., Sivertsvik, M., Lunestad, B.T., Lorentzen, G., and Rosnes, J.T. 2007. Characterisation of the dominant bacterial population in modified atmosphere packaged farmed halibut (Hippoglossus hippoglossus) based on 16S rDNA-DGGE. Food Microbiol. 24, 362-371. https://doi.org/10.1016/j.fm.2006.07.018
  21. Hucker, G.J. and Cohn, H.J. 1923. Methods of Gram staining. Tech. Bull. N.Y. State Agric. Exp. Sta. 93.
  22. Hugh, R. and Leifson, E. 1953. The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram-negative bacteria. J. Bacteriol. 66, 24-26.
  23. Ivanova, E.P., Alexeeva1, Y.A., Zhukova, N.V., Gorshkova, N.M., Buljan, V., Nicolau, D.V., Mikhailov, V.V., and Christen, R. 2004. Bacillus algicola sp. nov., a novel filamentous organism isolated from brown alga Fucus evanescens. System. Appl. Microbiol. 27, 301-307. https://doi.org/10.1078/0723-2020-00269
  24. Jeffries, C.D., Holtman, D.F., and Guse, D.G. 1957. Rapid method for determining the activity of microorganisms on nucleic acids. J. Bacteriol. 75, 590-591.
  25. Joo, H.-S., Kumar, C.G., Park, G.-C., Paik S.R., and Chang, C.-S. 2004. Bleach-resistant alkaline protease produced by Bacillus sp. isolated from the Korean polychaete, Periserrula leucophryna. Process Biochem. 39, 1441-1447. https://doi.org/10.1016/S0032-9592(03)00260-7
  26. Kapdan, I.K. and Erten, B. 2007. Anaerobic treatment of saline wastewater by Halanaerobium lacusrosei. Process Biochem. 42, 449-453. https://doi.org/10.1016/j.procbio.2006.09.001
  27. Kennedy, S.B., Tucker, J.W., Neidig, C.L., Vermeer, G.K., Cooper, V.R., Jarrell, J.L., and Sennett, D.G. 1998. Bacterial management strategies for stock enhancement of warm water marine fish : a case study with common snook (Centropomus undecimalis). Bull. Mar. Sci. 62, 573-588.
  28. Kumar, S., Nei, M., Dudley, J., and Tamura, K. 2008. Mega : a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform. 9, 299-306. https://doi.org/10.1093/bib/bbn017
  29. Lane, D.J. 1991. 16S/23S rRNA sequencing. In Stackebrandt, E. and Goodfellow, M. (eds.), Nucleic acid techniques in bacterial systematics. pp. 115-75. John Wiley and Sons, New York, N.Y., USA.
  30. Maniatis, T., Fritsch, E.F., and Sambrook, J. 1982. Molecular cloning. cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., USA.
  31. Mikesell, M.D., Kukor, J.J., and Olsen, R.H. 1993. Metabolic diversity of aromatic hydrocarbon-degrading bacteria from a petroleumcontaminated aquifer. Biodegradation 4, 249-259.
  32. Moeller, M. 1891. Ueber eine neue Methode der Sporenfarbung. Zbl. Bakt. I. Abt. Orig. 10, 273-277.
  33. Moriarty, D.J.W. 1998. Control of luminous Vibrio species in penaeid aquaculture ponds. Aquatic zooremediation: deploying animals to remediate contaminated aquatic environments. Aquacult. 164, 351-358. https://doi.org/10.1016/S0044-8486(98)00199-9
  34. Orejas, C., Gili, J.M., Arntz, W.E., Ros, J.D., Lopez, P.J., Teixido, N., and Filipe, P. 2000. Benthic suspension feeders, key players in Antarctic marine ecosystems. Contribut. Sci. 1, 299-311.
  35. Perez, E., Blasco, J., and Sole, M. 2004. Biomarker responses to pollution in two invertebrate species: Scrobicularia plana and Nereis diversicolor from the Cadiz bay (SW Spain). Mar. Environ. Res. 58, 275-279. https://doi.org/10.1016/j.marenvres.2004.03.071
  36. Palacios, G.L. and Timmons, M.B. 2001. Determining design parameters for recovery of aquaculture wastewater using sand beds. Aquacult. Engineer. 24, 289-299. https://doi.org/10.1016/S0144-8609(01)00070-X
  37. Prieur, D., Mével, G., Nicolas, J.L., Plusquellec, A., and Vigneulle, M. 1990. Interactions between bivalve molluscs and bacteria in the marine environment. Oceanogr. Mar. Biol. Ann. Rev. 28, 277-352.
  38. Raida, M.K., Larsen, J.L., Nielsen, M.E., and Buchmann, K. 2003. Enhanced resistance of rainbow trout, Oncorhynchus mykiss (Walbaum), against Yersinia ruckeri challenge following oral administration of Bacillus subtilis and B. licheniformis (BioPlus2B). J. Fish. Dis. 26, 495-498. https://doi.org/10.1046/j.1365-2761.2003.00480.x
  39. Saitou, N. and Nei, M. 1987. The neighbor-joining method : a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
  40. Stabili, L., Licciano, M., Giangrande, A., Fanelli, G., and Cavallo, R.S. 2006. Sabella spallanzanii filter-feeding on bacterial community: ecological implications and applications. Mar. Environ. Res. 61, 74-92. https://doi.org/10.1016/j.marenvres.2005.06.001
  41. Sugita, H., Hirose, Y., Matsuo, N., and Deguchi, Y. 1998. Production of the antibacterial substance by Bacillus species strain NM12, an intestinal bacterium of Japanese coastal fish. Aquacult. 165, 269-280. https://doi.org/10.1016/S0044-8486(98)00267-1
  42. Taubel, M., Kampfer, P., Buczolits, S., Lubitz, L., and Busse, H.-J. 2003. Bacillus barbaricus sp. nov., isolated from an experimental wall painting. Int. J. Syst. Evol. Microbiol. 53, 725-730. https://doi.org/10.1099/ijs.0.02304-0
  43. Vaseeharan, B. and Ramasamy, P. 2003. Control of pathogenic Vibrio spp. by Bacillus subtilis BT23, a possible probiotic treatment for black tiger shrimp Penaeus monodon. Lett. Appl. Microbiol. 36, 83-87. https://doi.org/10.1046/j.1472-765X.2003.01255.x
  44. Verschuere, L., Rombaut, G., Sorgeloos, P., and Verstraete, W. 2000. Probiotic bacteria as biological control agents in aquaculture. Microbiol. Mol. Biol. Res. 64, 655-671. https://doi.org/10.1128/MMBR.64.4.655-671.2000
  45. Vigneswaran, S., Ngo, H.H., and Wee, K.L. 1999. Effluent recycle and waste minimisation in prawn farm effluent. J. Cleaner Prod. 7, 121-126. https://doi.org/10.1016/S0959-6526(98)00048-1
  46. Yoon, J.H., Kim, I.G., Kang, K.H., Oh, T.K., and Park, Y.H. 2004. Bacillus hwajinponensis sp. nov. and an unnamed Bacillus genomospecies, novel members of Bacillus rRNA group 6 isolated from sea water of the East Sea and the Yellow Sea in Korea. Int. J. Syst. Evol. Microbiol. 54, 803-808. https://doi.org/10.1099/ijs.0.02678-0
  47. Ziaei-Nejad, S., Rezaeib, M.H., Takamic, G.A., Lovettd, D.L., Mirvaghefia, A., and Shakourie, M. 2006. The effect of Bacillus spp. bacteria used as probiotics on digestive enzyme activity, survival and growth in the Indian white shrimp Fenneropenaeus indicus. Aquacult. 252, 516-524. https://doi.org/10.1016/j.aquaculture.2005.07.021