DOI QR코드

DOI QR Code

A Study on the Treatment of Heavy Metal in Wastewater by Redox Reaction of Cu-Zn Metal Alloy and Adsorption reaction of Al-Silicate

Cu-Zn 금속합금의 산화 환원반응과 Al-Silicate의 흡착반응을 이용한 폐수 중 중금속처리에 관한 연구

  • Lee, Soo-Jeong (Department of Chemical Engineering, Changwon National University) ;
  • Kim, Jong Hwa (Department of Chemical Engineering, Changwon National University) ;
  • Song, Ju Yeong (Department of Chemical Engineering, Changwon National University)
  • 이수정 (창원대학교 화공시스템공학과) ;
  • 김종화 (창원대학교 화공시스템공학과) ;
  • 송주영 (창원대학교 화공시스템공학과)
  • Received : 2016.07.21
  • Accepted : 2016.09.02
  • Published : 2016.09.30

Abstract

Heavy metal removal study is conducted from synthetic waste water by reduction and oxidation(redox) reaction of Cu-Zn metal alloy and adsorption reaction of aluminium silicate. Heavy metal whose ionization tendency is smaller than zinc are reducted in an aqueous solution, and the concentration of ionized zinc is reduced by adsorption reaction. The average diameter of metal alloy micro fiber is about $200{\mu}m$, and the surface area is wide enough to get equilibrium in a single cycle treatment. A single cycle treatment of redox reaction of Cu-Zn metal alloy, could remove 100.0 % of Cr(III), 98.0 % of Hg, 92.0 % of Sn and 91.4 % of Cu respectively. An ionization tendency of chromium is very close to zinc, but removal efficiency of chromium by redox reaction is significant. This result shows that trivalent chromium ion is expected to generate hydroxide precipitation with $OH^-$ ion generated by redox reaction. Zinc ion generated by redox reaction is readily removed by adsorption reaction of aluminium silicate in a single cycle treatment. Other heavy metal components which are not perfectly removed by redox reaction also showed very high removal efficiency of 98.0 % or more by adsorption reaction. Aluminium ion is not increased by adsorption reaction of aluminium silicate. That means heavy metal ion removal mechanism by adsorption reaction is turned out to be not an ion exchange reaction, but an adsorption reaction.

본 연구는 구리 아연 금속합금의 산화 환원 반응과 합성 알루미늄 실리케이트의 흡착 반응을 이용한 폐수 중 중금속 처리에 관한 연구이다. 극세사 형태로 제조된 구리 아연 금속합금이 수용액 중에서 산화 환원반응에 의해 아연보다 이온화 경향이 작은 중금속은 환원 처리되고, 이온화 된 아연 및 미반응 중금속은 흡착 처리하여 제거하는 연구이다. 극세사 형태로 제조된 금속합금 물질은 표면적이 커서 1회 처리만으로도 반응 평형에 도달하게 하여 효율이 높은 것으로 나타났다. 크롬($Cr^{+3}$)은 redox 반응 1회 처리만으로도 100.0 % 제거 되었으며, 수은은 98.0 %, 주석 92.0 %, 구리는 91.4 % 정도 제거되었다. 카드뮴, 니켈, 납도 각각 40.0 %, 50.0 %, 58.0 %가 제거 되었다. 크롬($Cr^{+3}$)은 아연과 이온화 경향 차이가 거의 없지만 제거 효율이 높은 것으로 나타났는데 이는 3가 크롬은 이온 상태로 존재하면 redox 반응에서 발생한 $OH^-$ 이온과 결합하여 수산화물 침전을 형성하는 것으로 판단된다. Redox 반응 후 증가한 아연 및 미반응 중금속 농도를 알루미늄실리케이트를 1회 통과하여 거의 100.0 % 제거할 수 있었다. 이는 합성 알루미늄 실리케이트의 비표면적이 크고 금속 이온의 흡착능력이 우수한 것으로 나타났으며, 반응 후 알루미늄 이온은 증가하지 않는 것으로 보아 이온 교환이 아닌 흡착으로 아연 및 중금속 이온들을 제거할 수 있는 것으로 나타났다.

Keywords

References

  1. J. Choong and S. S. Choi, A study on heavy metal removal using alginic acid, J. of KORRA, 15(4), 107 (2007).
  2. S. H. Han, Establishment of technology-based effluent standards for conventional pollutants in the steel industry, Yeungnam University Master of Science Dissertation, (2014).
  3. B. C. Paik and K. B. Kim, Effect of temperature on heavy metals removal from acid mine drainage, Journal of Environmental Reseach Institute, 2 , 25 (1999).
  4. Y. C. Lee and D. Y. Ko, A study on the removal of heavy metals using functional group on the surface of discarded automotive tires, J. of KSEE, 29(3), 357 (2007).
  5. M. S. Kim, B. S. Kim, E. Y. Kim, S. K. Kim ,and J. C. Lee, Recovery of Platinum group metals from the leach solution of spent automotive catalysts by cementation, J. of Korean Inst. of Resources Recycling, 20(4), 36 (2011). https://doi.org/10.7844/kirr.2011.20.4.036
  6. M. H. Lim, M. J. Kim, Stabilization of residual heavy metals after soil washing of mine tailings contaminated with arsenic and heavy metals, J. Kor. Soc. Environ. Eng., 36(1), 67 (2014). https://doi.org/10.4491/KSEE.2014.36.1.67
  7. J. N. Shin, A study on the continuous heavy metal removal in aqueous solution using crab shell packed column, Catholic University Master of Science Dissertation, (2002).
  8. M. H. Lim, M. J. Kim, Stabilization of residual heavy metals after soil washing of mine tailings contaminated with arsenic and heavy metals, J. Kor. Soc. Environ. Eng., 36(1), 67 (2014). https://doi.org/10.4491/KSEE.2014.36.1.67
  9. J. Y. Lee, Y. S. Kim, Y. H. Kwon, S. H. Kong, S. Y. Park, C. H. Lee ,and H.R. Sung, A study of heavy metalcontaminated soil remediation with a EDTA and boric and composite(II) : Cd and Cr, Journal of KoSSGE, 9(4), 8 (2004).
  10. J. Y. Song, J. W. Park ,and J. H. Kim, A study on the treatment of refractory organics by redox reaction of Cu-Zn metal alloy, J. of Korean Oil Chemists' Soc., 30(1), 166 (2013). https://doi.org/10.12925/jkocs.2013.30.1.166
  11. T. K. Kim, J. H. Kim ,and J. Y. Song, A study on the removal of phosphorus from wastewater by redox reaction of Cu-Zn metal alloy, J. of Korean Oil Chemists' Soc., 32(1), 78 (2015).
  12. H. S. Kim, A study on the antimicrobial activity of cyanobacteria by redox reaction of Cu-Zn alloy metal fiber, Changwon University Master of Science Dissertation, (2007).
  13. H. S. Kim, S. H. Lee, J. H. Kim, K. H. Park ,and J. Y. Song, A study on the antimicrobial activity of mcrocystis aeruginosa by redox rection of Cu-Zn alloy metal fiber, J. of The Korean oil chemists' Soc., 25(2), 168 (2008).
  14. I. K. Sung, J. Y. Song and S. B. Kim, Preparation of chitosan/poly-$\gamma$-glutamic acid nanoparticles and their application to removal of heavy metals, Korean Chem. Eng. Res., 49(4), 475 (2011). https://doi.org/10.9713/kcer.2011.49.4.475
  15. E. M. Gwon, S. K. Hong, J. H. Kim, W. J. Jung ,and M. J. Yoo, Impact of the silicate polymerization on the formation of insolube aluminium silicate, J. of KSEE, 29(6), 654 (2007).
  16. Y. G. Seo and D. K. Lee, Removal of heavy-metal ions from aqueous solution by hydroxyapatite, Journal of the Korean Institute of Chemical Engineers, 33(3), 360 (1995).
  17. H. K. An, B. Y. Park ,and D. S. Kim, The removal of heavy metals by crab shell in aqueous solution, J. of the Korean Environmental Sciences Society, 9(5), 409 (2000).
  18. J. H. Park, G. J. Choi and S. H. Kim, Effects of pH and slow mixing conditions on heavy metal hydroxide precipitation, J. of KORRA, 22(2), 50 (2014).
  19. W. S. Shin and Y. K. Kim, Adsorption characteristics of synthetic heavy metals($Zn^{2+}$, $Ni^{2+}$, $Cd^{2+}$, $Cu^{2+}$ ,and $Pb^{2+}$)by bentonite, J. of KORRA, 22(2), 17 (2014).
  20. E. Vunain, A. Mishra and B. Mamba, Dendrimers, mesoporous silicas and chitosan-based nanosorbents for the removal of heavy-metal ions: A review, International Journal of Biological Macromolecules, 86, 570 (2016). https://doi.org/10.1016/j.ijbiomac.2016.02.005
  21. R. Mukherjee, P. Bhunia and S. De, Impact of graphene oxide on removal of heavy metals using mixed matrix membrane, Chemical Engineering Journal, 292, 284 (2016). https://doi.org/10.1016/j.cej.2016.02.015

Cited by

  1. 산 처리를 통한 아연의 산화 환원 반응을 이용한 질산성 질소 제거에 관한 연구 vol.34, pp.2, 2016, https://doi.org/10.12925/jkocs.2017.34.2.217
  2. 전기화학처리와 HClO 처리를 통한 폐수중 COD, 총인, 총질소의 저감에 대한 연구 vol.34, pp.3, 2017, https://doi.org/10.12925/jkocs.2017.34.3.436
  3. 아연볼의 산화·환원 반응을 통한 연속식 질산성질소 처리에 관한 연구 vol.34, pp.3, 2016, https://doi.org/10.12925/jkocs.2017.34.3.487
  4. 층간 삽입반응으로 얻어진 화합물을 이용한 휘발성 유기화합물의 흡착과정 변화에 대한 연구 vol.34, pp.4, 2016, https://doi.org/10.12925/jkocs.2017.34.4.799
  5. 비이온성 고분자의 Iodine 착물형성에 대한 계면활성제의 영향 vol.35, pp.4, 2016, https://doi.org/10.12925/jkocs.2018.35.4.1031