• Title/Summary/Keyword: Synthesis optimization

Search Result 411, Processing Time 0.026 seconds

A Minimization Technique for BDD based on Microcanonical Optimization (Microcanonical Optimization을 이용한 BDD의 최소화 기법)

  • Lee, Min-Na;Jo, Sang-Yeong
    • The KIPS Transactions:PartA
    • /
    • v.8A no.1
    • /
    • pp.48-55
    • /
    • 2001
  • Using BDD, we can represent Boolean functions uniquely and compactly, Hence, BDD have become widely used for CAD applications, such as logic synthesis, formal verification, and etc. The size of the BDD representation for a function is very sensitive to the choice of orderings on the input variables. Therefore, it is very important to find a good variable ordering which minimize the size of the BDD. Since finding an optimal ordering is NP-complete, several heuristic algorithms have been proposed to find good variable orderings. In this paper, we propose a variable ordering algorithm based on the $\mu$O(microcanonical optimization). $\mu$O consists of two distinct procedures that are alternately applied : Initialization and Sampling. The initialization phase is to executes a fast local search, the sampling phase leaves the local optimum obtained in the previous initialization while remaining close to that area of search space. The proposed algorithm has been experimented on well known benchmark circuits and shows superior performance compared to a algorithm based on simulated annealing.

  • PDF

Search space pruning technique for optimization of decision diagrams (결정 다이어그램의 최적화를 위한 탐색공간 축소 기법)

  • Song, Moon-Bae;Dong, Gyun-Tak;Chang, Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.8
    • /
    • pp.2113-2119
    • /
    • 1998
  • The optimization problem of BDDs plays an improtant role in the area of logic synthesis and formal verification. Since the variable ordering has great impacts on the size and form of BDD, finding a good variable order is very important problem. In this paper, a new variable ordering scheme called incremental optimization algorithm is presented. The proposed algorithm reduces search space more than a half of that of the conventional sifting algorithm, and computing time has been greatly reduced withoug depreciating the performance. Moreover, the incremental optimization algorithm is very simple than other variable reordering algorithms including the sifting algorithm. The proposed algorithm has been implemented and the efficiency has been show using may benchmark circuits.

  • PDF

Optimal PID Controller Design for DC Motor Speed Control System with Tracking and Regulating Constrained Optimization via Cuckoo Search

  • Puangdownreong, Deacha
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.460-467
    • /
    • 2018
  • Metaheuristic optimization approach has become the new framework for control synthesis. The main purposes of the control design are command (input) tracking and load (disturbance) regulating. This article proposes an optimal proportional-integral-derivative (PID) controller design for the DC motor speed control system with tracking and regulating constrained optimization by using the cuckoo search (CS), one of the most efficient population-based metaheuristic optimization techniques. The sum-squared error between the referent input and the controlled output is set as the objective function to be minimized. The rise time, the maximum overshoot, settling time and steady-state error are set as inequality constraints for tracking purpose, while the regulating time and the maximum overshoot of load regulation are set as inequality constraints for regulating purpose. Results obtained by the CS will be compared with those obtained by the conventional design method named Ziegler-Nichols (Z-N) tuning rules. From simulation results, it was found that the Z-N provides an impractical PID controller with very high gains, whereas the CS gives an optimal PID controller for DC motor speed control system satisfying the preset tracking and regulating constraints. In addition, the simulation results are confirmed by the experimental ones from the DC motor speed control system developed by analog technology.

Flap Design Optimization for KLA-100 Aircraft in compliance with Airworthiness Certification (인증규정을 고려한 KLA-100항공기 고양력장치 최적화 설계)

  • Park, Jinhwan;Tyan, Maxim;Nguyen, Nhu Van;Kim, Sangho;Lee, Jae-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.8
    • /
    • pp.649-656
    • /
    • 2013
  • High-lift devices have a major influence on takeoff, landing and stall performance of an aircraft. Therefore, a slotted flap design optimization process is proposed in this paper to obtain the most effective flap configuration from supported 2D flap configuration. Flap deflection, Gap and Overlap are considered as main contributors to flap lift increment. ANSYS Fluent 13.0.0$^{(R)}$ is used as aerodynamic analysis software that provides accurate solution at given flight conditions. Optimum configuration is obtained by Sequential Quadratic Programing (SQP) algorithm. Performance of the aircraft with optimized flap is estimated using Aircraft Design Synthesis Program (ADSP), the in-house performance analysis code. Obtained parameters such as takeoff, landing distance and stall speed met KAS-VLA airworthiness requirements.

Real-Time Implementation of the EHSX Speech Coder Using a Floating Point DSP (부동 소수점 DSP를 이용한 4kbps EHSX 음성 부호화기의 실시간 구현)

  • 이인성;박동원;김정호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.5
    • /
    • pp.420-427
    • /
    • 2004
  • This paper presents real time implementation of 4kbps EHSX (Enhanced Harmonic Stochastic Excitation) speech coder that combines the harmonic vector excitation coding with time-separated transition coding. The harmonic vector excitation coding uses the harmonic excitation coding for voiced frames and used the vector excitation coding with the structure of analysis-by-synthesis for unvoiced frames, respectively. For transition frames mixed with voiced and unvoiced signal, we use the time-separated transition coding. In this paper. we present the optimization methods of implementation speech coder on the EMS320C6701/sup (R)/ DSP. To reduce the complex for real-time implementation. we perform the optimization method in algorithm by replacing the complex sinusoidal synthesis method with IFFT. and we apply fully pipelines hand assembly coding after converting it from floating source to fixed source. To generate a more efficient code. we also make use or the available EMS320C6701/sup (R)/ resources such as Fastest67x library and memory organization.

Optimization of Preparing Poly(AM-DMDAAC)/MMT Superabsorbent Nanocomposite by Orthogonal Experiment (Orthogonal 방법을 통한 Poly(AM-DMDAAC)/MMT 고흡수성 나노복합체 제조 연구)

  • Zhou, Ming;Yang, Shuangqiao;Zhou, Yongguo;Qin, Nan;He, Songtao;Lai, Dong;Xie, Zhongqiang;Yuan, Jundong
    • Polymer(Korea)
    • /
    • v.38 no.1
    • /
    • pp.16-23
    • /
    • 2014
  • A novel poly(AM-DMDAAC)/MMT superabsorbent nanocomposites are prepared by radical polymerization using ammonium persulfate (APS) and anhydrous sodium sulfite as a free radical initiator and N,N-methylene bisacrylamide (MBA) as a crosslinker. In this paper, an optimization study on the synthesis of superabsorbent nanocomposites is carried out. Orthogonal array experiment indicates that the optimized conditions is acrylamide (AM) content 23 wt%, diallyl dimethyl ammonium chloride (DMDAAAC) content 6 wt%, montmorillonite (MMT) content 4 wt%, initiator content 0.2 wt% and crosslinker content 0.02 wt%. Under the optimization syntheses conditions concluded, the maximum water absorbency in distilled water is $659.53g{\cdot}g^{-1}$ and in 2 wt% sodium chloride solution is $116.25g{\cdot}g^{-1}$. Compared with the range values of different factors ($R_j$), the order of significance factors in distilled water is C (MMT) > B (DMDAAC) > A (AM) > D (crosslinker) > E (initiator). MMT is intercalated during polymerization reaction and a nanocomposite structure is formed as shown by TEM analysis and XRD analysis.

Optimization of Medium for Lipase Production from Zygosaccharomyces mellis SG1.2 Using Statistical Experiment Design

  • Pramitasari, Marisa Dian;Ilmi, Miftahul
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.337-345
    • /
    • 2021
  • Lipase (triacylglycerol lipase, EC 3.1.1.3) is an enzyme capable of hydrolyzing triacylglycerol, to produce fatty acids and glycerol and reverse the reaction of triacylglycerol synthesis from fatty acids and glycerol through transesterification. Applications of lipase are quite widespread in the industrial sector, including in the detergent, paper, dairy, and food industries, as well as for biodiesel synthesis. Lipases by yeasts have attracted industrial attention because of their fast production times and high stability. In a previous study, a lipase-producing yeast isolate was identified as Zygosaccharomyces mellis SG1.2 and had a productivity of 24.56 U/mg of biomass. This productivity value has the potential to be a new source of lipase, besides Yarrowia lypolitica which has been known as a lipase producer with a productivity of 0.758 U/mg. Lipase production by Z. mellis SG1.2 needs to be increased by optimizing the production medium. The aims of this study were to determine the significant component of the medium for lipase production and methods to increase lipase production using the optimum medium. The two methods used for the statistical optimization of production medium were Taguchi and RSM (Response Surface Methodology). The data obtained were analyzed using Minitab 18 and SPSS 23 software. The most significant factors which affected lipase productivity were olive oil and peptones. The optimum medium composition consisted of 1.02% olive oil, 2.19% peptone, 0.05% MgSO4·7H2O, 0.05% KCl, and 0.2% K2HPO4. The optimum medium was able to increase the lipase productivity of Z. mellis SG1.2 to 1.8-fold times the productivity before optimization.

A Filter Synthesis Method for Multi-Band Filter Design (다중 대역 필터 설계를 위한 필터 합성법)

  • Lee, Hye-Sun;Lee, Ja-Hyeon;Lim, Yeong-Seog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.11
    • /
    • pp.1259-1268
    • /
    • 2010
  • In this paper, we presented a new LC prototype synthesis method for the multi-band filter. For synthesis a multi-band filter with the required frequency response, we proposed the diagram of poles and zeros, also, we proposed the optimization process for finding the combination of optimized poles and zeros. From the transfer and reflection functions calculated from poles and zeros, we performed the quasi-elliptic LC prototype synthesis of multi-band filter. Using the proposed LC prototype synthesis method of multi-band filter, dual-band filter operating at GSM(880~960 MHz) and ISM(2,400~2,500 MHz) and triple-band filter operating at GSM(880~960 MHz) and ISM(2,400~2,500, 5,725~5,850 MHz) were designed and fabricated.

A Comparison of Pan-sharpening Algorithms for GK-2A Satellite Imagery (천리안위성 2A호 위성영상을 위한 영상융합기법의 비교평가)

  • Lee, Soobong;Choi, Jaewan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.4
    • /
    • pp.275-292
    • /
    • 2022
  • In order to detect climate changes using satellite imagery, the GCOS (Global Climate Observing System) defines requirements such as spatio-temporal resolution, stability by the time change, and uncertainty. Due to limitation of GK-2A sensor performance, the level-2 products can not satisfy the requirement, especially for spatial resolution. In this paper, we found the optimal pan-sharpening algorithm for GK-2A products. The six pan-sharpening methods included in CS (Component Substitution), MRA (Multi-Resolution Analysis), VO (Variational Optimization), and DL (Deep Learning) were used. In the case of DL, the synthesis property based method was used to generate training dataset. The process of synthesis property is that pan-sharpening model is applied with Pan (Panchromatic) and MS (Multispectral) images with reduced spatial resolution, and fused image is compared with the original MS image. In the synthesis property based method, fused image with desire level for user can be produced only when the geometric characteristics between the PAN with reduced spatial resolution and MS image are similar. However, since the dissimilarity exists, RD (Random Down-sampling) was additionally used as a way to minimize it. Among the pan-sharpening methods, PSGAN was applied with RD (PSGAN_RD). The fused images are qualitatively and quantitatively validated with consistency property and the synthesis property. As validation result, the GSA algorithm performs well in the evaluation index representing spatial characteristics. In the case of spectral characteristics, the PSGAN_RD has the best accuracy with the original MS image. Therefore, in consideration of spatial and spectral characteristics of fused image, we found that PSGAN_RD is suitable for GK-2A products.

Vibration analysis and optimization of functionally graded carbon nanotube reinforced doubly-curved shallow shells

  • Hammou, Zakia;Guezzen, Zakia;Zradni, Fatima Z.;Sereir, Zouaoui;Tounsi, Abdelouahed;Hammou, Yamna
    • Steel and Composite Structures
    • /
    • v.44 no.2
    • /
    • pp.155-169
    • /
    • 2022
  • In the present paper an analytical model was developed to study the non-linear vibrations of Functionally Graded Carbon Nanotube (FG-CNT) reinforced doubly-curved shallow shells using the Multiple Scales Method (MSM). The nonlinear partial differential equations of motion are based on the FGM shallow shell hypothesis, the non-linear geometric Von-Karman relationships, and the Galerkin method to reduce the partial differential equations associated with simply supported boundary conditions. The novelty of the present model is the simultaneous prediction of the natural frequencies and their mode shapes versus different curvatures (cylindrical, spherical, conical, and plate) and the different types of FG-CNTs. In addition to combining the vibration analysis with optimization algorithms based on the genetic algorithm, a design optimization methode was developed to maximize the natural frequencies. By considering the expression of the non-dimensional frequency as an objective optimization function, a genetic algorithm program was developed by valuing the mechanical properties, the geometric properties and the FG-CNT configuration of shallow double curvature shells. The results obtained show that the curvature, the volume fraction and the types of NTC distribution have considerable effects on the variation of the Dimensionless Fundamental Linear Frequency (DFLF). The frequency response of the shallow shells of the FG-CNTRC showed two types of nonlinear hardening and softening which are strongly influenced by the change in the fundamental vibration mode. In GA optimization, the mechanical properties and geometric properties in the transverse direction, the volume fraction, and types of distribution of CNTs have a considerable effect on the fundamental frequencies of shallow double-curvature shells. Where the difference between optimized and not optimized DFLF can reach 13.26%.