• Title/Summary/Keyword: Synchronization Control

Search Result 595, Processing Time 0.032 seconds

Global Synchronization of Two Different Chaotic Systems via Nonlinear Control

  • Emadzadeh, Amir Abbas;Haeri, Mohammad
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.985-989
    • /
    • 2005
  • This paper presents chaos synchronization between two different chaotic systems using nonlinear control method. The proposed technique is applied to achieve chaos synchronization for the Lorenz and Rossler dynamical systems. Numerical simulations are also implemented to verify the results.

  • PDF

Synchronization Control of Multiple Motors using CAN Clock Synchronization (CAN 시간동기를 이용한 복수 전동기 동기제어)

  • Khoa Do, Le Minh;Suh, Young-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.7
    • /
    • pp.624-628
    • /
    • 2008
  • This paper is concerned with multiple motor control using a distributed network control method. Speed and position of multiple motors are synchronized using clock synchronized distributed controllers. CAN (controller area network) is used and a new clock synchronization algorithm is proposed and implemented. To verify the proposed control algorithm, two disks which are attached on two motor shafts are controlled to rotate at the same speed and phase angle with the same time base using network clocks.

The Synchronization Method for Mutual Cooperation Control of Chaotic Mobile Robot (카오스 이동 로봇의 상호 협조 제어를 위한 동기화 기법)

  • Bae, Young-Chul;Kim, Chun-Suk;Koo, Young-Duk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.7
    • /
    • pp.1616-1623
    • /
    • 2005
  • In this paper, we propose that the synchronization method for mutual cooperative control in the chaotic mobile robot. In order to achieve the synchronization for mutual cooperative control in the chaotic mobile robot, we apply coupled synchronization technique and driven synchronization technique in the chaotic mobile robot without obstacle and with obstacle.

Global Chaos Synchronization of WINDMI and Coullet Chaotic Systems using Adaptive Backstepping Control Design

  • Rasappan, Suresh;Vaidyanathan, Sundarapandian
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.2
    • /
    • pp.293-320
    • /
    • 2014
  • In this paper, global chaos synchronization is investigated for WINDMI (J. C. Sprott, 2003) and Coullet (P. Coullet et al, 1979) chaotic systems using adaptive backstepping control design based on recursive feedback control. Our theorems on synchronization for WINDMI and Coullet chaotic systems are established using Lyapunov stability theory. The adaptive backstepping control links the choice of Lyapunov function with the design of a controller and guarantees global stability performance of strict-feedback chaotic systems. The adaptive backstepping control maintains the parameter vector at a predetermined desired value. The adaptive backstepping control method is effective and convenient to synchronize and estimate the parameters of the chaotic systems. Mainly, this technique gives the flexibility to construct a control law and estimate the parameter values. Numerical simulations are also given to illustrate and validate the synchronization results derived in this paper.

A Mechanism of Clock Synchronization for Wireless Networked Control System (무선 네트워크 제어 시스템을 위한 클럭 동기화 메커니즘)

  • Do, Trong-Hop;Quan, Wenji;Yoo, Myungsik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.7
    • /
    • pp.564-571
    • /
    • 2013
  • Wireless network has been used in many applications due to its advantages such as convenience, mobility, productivity, easy deployment, easy expandability and low cost. When it comes to stability, wireless network still shows its limitation which makes it difficult to be used for real-time control system. One of the first problems of using wireless network for control system is clock synchronization. There have been synchronization schemes proposed for wired networked control system as well as wireless network. But these should not be applied directly in wireless network control system. In this paper, we point out the importance of clock synchronization in wireless network control system. Then based on the characteristic of wireless networked control system, we propose a clock synchronization scheme for it. Furthermore, we simulate our scheme and compare with previous synchronization scheme in wired and wireless environments.

SYNCHRONIZATION OF UNIDIRECTIONAL RING STRUCTURED IDENTICAL FITZHUGH-NAGUMO NETWORK UNDER IONIC AND EXTERNAL ELECTRICAL STIMULATIONS

  • Ibrahim, Malik Muhammad;Jung, Il Hyo
    • East Asian mathematical journal
    • /
    • v.36 no.5
    • /
    • pp.547-554
    • /
    • 2020
  • Synchronization of unidirectional identical FitzHugh-Nagumo systems coupled in a ring structure under ionic and external electrical stimulations is investigated. In this network, each neuron is only connected and transmit signals to its next neuron via synaptic strength called gapjunctions. Adaptive control theory and Lyapunov stability theory are used to propose a unique control scheme with necessary and sufficient conditions which guarantee the synchronization of the neuronal network. Finally, the effectiveness of the proposed scheme is shown through numerical simulations.

Chaos Synchronization Using Error Feedback Coupling

  • Khademian, Behzad;Haeri, Mohammad
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1632-1636
    • /
    • 2005
  • This paper presents synchronization of two identical Modified Chua's circuits using two strategies of error feedback coupling. In the first method the synchronization is achieved by linear unidirectional and in the second one by linear bidirectional error feedback coupling. Both proposed methods can make the states of the Modified Chua's circuits globally asymptotically synchronized. Numerical results are provided to show the effectiveness of the proposed approaches and to compare them together based on different criteria.

  • PDF

A study on Mutual Cooperative Control in the Chaos Mobile Robot (이동 로봇의 연동 제어를 위한 동기화 기법)

  • Bae, Young-Chul;Kim, Chun-Suk;Koo, Young-Duk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.355-359
    • /
    • 2005
  • In this paper, we propose that the synchronization method for mutual cooperative control in the mobile robot. In order to achieve the synchronization for mutual cooperative control in the mobile robot, we apply coupled synchronization technique and driven synchronization technique in the mobile robot with obstacle.

  • PDF

Chaos Synchronization of Chua's Circuit with Transmission Line (전송선로를 가진 Chua 회로에서의 카오스 동기화)

  • Ko, Jae-Ho;Bae, Young-Chul;Yim, Hwa-Young
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.633-635
    • /
    • 1997
  • In this paper, a transmitter and a receiver using two identical Chua's circuits are proposed and a wire synchronizations are investigated. As several problems have been found in both the drive-response synchronization and the coupled synchronization in the previous researches, a new drive-coupled synchronization theory is proposed that can be applicable to wire communication. Since the synchronization of the wire transmission system is impossible by coupled synchronization, theory having both the drive-response and the coupled synchronization is proposed. As a result, the chaos synchronization has delay characteristics in the wire transmission system caused by the line parameters L and C.

  • PDF

Control and Synchronization of New Hyperchaotic System using Active Backstepping Design

  • Yu, Sung-Hun;Hyun, Chang-Ho;Park, Mi-Gnon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.2
    • /
    • pp.77-83
    • /
    • 2011
  • In this paper, an active backstepping design is proposed to achieve control and synchronization of a new hyperchaotic system. The proposed method is a systematic design approach and exists in a recursive procedure that interlaces the choice of a Lyapunov function with the design of the active control. The proposed controller enables stabilization of chaotic motion to the origin as well as synchronization of the two identical new hyperchaotic systems. Numerical simulations illustrate the validity of the proposed control technique.