References
- H. Fujisaka and T. Yamada, Stability theory of synchronized motion in coupled-oscillator systems, Progress of Theoretical Physics, 63(1983), 32-47.
- L. M. Pecora and T. L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett., 64(1990).
- L. M. Pecora and T. L. Carroll, Synchronizing chaotic circuits, IEEE Trans. Circ. Sys., 38(1991), 453-456. https://doi.org/10.1109/31.75404
- K. T. Alligood, T. Sauer and J. A. Yorke, Chaos: An Introduction to Dynamical Systems, Berlin, Germany: Springer-Verlag, 1997.
- Edward Ott, Chaos in Dynamical Systems, United Kingdom, Cambridge University Press, 2002.
- Y. M. Wang and H. Zhu, Generalized synchronization of continuous chaotic systems, Chaos, Solitons and Fractals, 27(2006), 97-101. https://doi.org/10.1016/j.chaos.2004.12.038
- Z. M. Ge and C. C. Chen Phase synchronization of coupled chaotic multiple time scales systems, Chaos, Solitons and Fractals, 20(2004), 639-647. https://doi.org/10.1016/j.chaos.2003.08.001
- J. Qiang, Projective synchronization of a new hyper chaotic Lorenz systems, Phys. Lett. A, 370(2007), 40-45. https://doi.org/10.1016/j.physleta.2007.05.028
- Y. Jian-Ping and L. Chang-Pin, Generalized projective synchronization for the chaotic Lorenz systems and the chaotic Chen system, Journal of Shanghai Univer-sity, 10(2006), 299-304. https://doi.org/10.1007/s11741-006-0004-y
- R. H. Li, W. Xu and S. Li, Adaptive generalized projective synchronization in different chaotic systems based on parameter identifiction, Phys. Lett. A, 367(2007), 199-206. https://doi.org/10.1016/j.physleta.2007.03.025
- V. Sundarapandian and P. Sarasu, Generalized projective synchronization of double-scroll chaotic systems using active feedback control, CCSIT 2012, Part-I, LNICST 84, Springer Heldelberg, Dordrecht, London, Newyork, pp. 111-118, 2012. Edited by N. Meganathan et., al.
- P. Sarasu, and V. Sundarapandian, Generalized projective synchronization of three-scroll chaotic systems via. active control, CCSIT 2012, Part-I, LNICST Vol. 84, Springer Heldelberg, Dordrecht, London, Newyork, pp. 124-133, 2012. Edited by N. Meganathan et., al.
- V. Sundarapandian and S. Sivaperumal, Anti-synchronization of hyperchaotic Lorenz and hyperchaotic Chen systems by adaptive control, International Journal of Automation and Computing, 9(2012), 274-279. https://doi.org/10.1007/s11633-012-0644-2
- V. Sundarapandian and R. Karthikeyan, Anti-synchronization of four wing chaotic systems via sliding mode control, International Journal of Signal System Control and Engineering Application, 4(2011), 18-25.
- K. Murali and M. Lakshmanan, Secure communication using a compound signal using sampled-data feedback, Applied Mathematics and Mechanics, 11(2003), 1309-1315.
- T. Yang, and L. O. Chua Generalized synchronization of chaos via linear transfor-mations, Internat. J. Bifur. Chaos, 9(1999), 215-219. https://doi.org/10.1142/S0218127499000092
- K. Murali and M. Lakshmanan, Chaos in Nonlinear Oscillators: Controlling and Synchronization, Singapore: World Scientific, 1996.
- S. K. Han, C. Kerrer, and Y. Kuramoto, D-phasing and bursting in coupled neural oscillators, Phys. Rev. Lett., 75(1995), 3190-3193. https://doi.org/10.1103/PhysRevLett.75.3190
- B. Blasius, A. Huppert and L. Stone, Complex dynamics and phase synchronization in spatially extended ecological system, Nature, 399(1999), 354-359. https://doi.org/10.1038/20676
- L. Kocarev, and U. Parlitz, General approach for chaotic synchronization with applications to communications, Phys. Rev. Lett., 74(1995), 5028-5030. https://doi.org/10.1103/PhysRevLett.74.5028
- Zuolei Wang, Chaos synchronization of an energy resource system based on linear control, Nonlinear Analysis: Real world Application,(article in press).
-
Jiang Wang, Lisong Chen, Bin Deng, Synchronization of ghostburster neurons in external electrical stimulation via
$H{\infty}$ variable universe fuzzy adaptive control, Chaos, Solitons and Fractals, 39(2009), 2076-2085. https://doi.org/10.1016/j.chaos.2007.06.070 - F. M. Moukam Kakmeni, J. P. Nguenang, and T. C. Kofane, Chaos synchronization in bi-axial magnets modeled by bloch equation, Chaos, Solitons and Fractals, 30(2006), 690-699. https://doi.org/10.1016/j.chaos.2005.10.094
- J. L. Hindmarsh and R. M. Rose, A model of neuronal bursting using 3-coupled 1 st order differential equations, Proc. Roy. Soc. Lond. B. Biol, 221(1984), 81-102.
- Yan-Qiu Che, Jiang Wang, Kai-Ming Tsang and Wai-Lok Chen, Unidirectional syn-chronization for Hindmarsh-Rose neurons via robust adaptive sliding mode control, Nonlinear Analysis: Real world Application, 11(2010), 1096-1104. https://doi.org/10.1016/j.nonrwa.2009.02.004
- Guang Zhao Zeng, Lan Sun Chen and Li Hua Sun, Complexity of an SIR epidemic dynamics model with impulsive vaccination control, Chaos, Solitons and Fractals, 26(2005), 495-505. https://doi.org/10.1016/j.chaos.2005.01.021
- Junxa Wang, Dianchen Lu and Lixin Tian, Global synchronization for time delay WINDMI system , Chaos, Solitons and Fractals, 30(2006), 629-635. https://doi.org/10.1016/j.chaos.2005.04.010
- W. Horton, R. S. Weigel and J. C. Sprott, Chaos and the limits of predictability for the solar-wind-driven magnetosphere-ionosphere system, Physics of Plasmas, 8(2003), 2946-2952.
- W. Horton and J. Doxas, A low-dimentional dynamical model for the solar wind driven geotail-ionosphere system, Journal of Geophysical Research A, 103(1998), 4561-4512. https://doi.org/10.1029/97JA02417
- J. P. Smith, J. L. Thiffeault and W. Horton, Dynamical range of WINDMI model: an exploration of possible magnetospheric plasma states, Journal of Geophysical Research A, 105(2000), 12983-12996. https://doi.org/10.1029/1999JA000218
- E. Ott, C. Grebogi and J. A. Yorke, Controlling chaos, Phys. Rev. Lett., 64(1990), 1196-1199. https://doi.org/10.1103/PhysRevLett.64.1196
- J. H. Park, and O. M. Kwon, A novel criterion for delayed feedback control of time-delay chaotic systems, Chaos, Solitons and Fractals, 17(2003), 709-716. https://doi.org/10.1016/S0960-0779(02)00487-3
- H. T. Yau, Design of adaptive sliding mode controller for chaos synchronization with uncertainties, Chaos, Solitons and Fractals, 22(2004), 341-347. https://doi.org/10.1016/j.chaos.2004.02.004
- V. Sundarapandian, Global chaos synchronization of the Pehlivan systems by sliding mode control, International J. Computer Science and Engineering, 03(2011), 2163-2169.
- V. Sundarapandian and R. Suresh, Global chaos synchronization for Rossler and Ar-neodo chaotic systems by nonlinear control, Far East Journal of Applied Mathematics, 44(2010), 137-148.
- V. Sundarapandian and R. Suresh, New results on the global chaos synchronization for Liu-Chen-Liu and Lu chaotic systems, PEIE 2010, CCIS Vol. 102, Springer-Verlag Berlin Heidelberg, pp. 20-27, 2010. Edited by V. V. Das, J. Stephen et., al.
- X. Wu and J. L, Parameter identification and backstepping control of uncertain Lu system , Chaos, Solitons and Fractals, 18(2003), 721-729. https://doi.org/10.1016/S0960-0779(02)00659-8
- Y. G. Yu and S. C. Zhang, Adaptive backstepping synchronization of uncertain chaotic systems, Chaos, Solitons and Fractals, 27(2006), 1369-1375. https://doi.org/10.1016/j.chaos.2005.05.001
- R. Suresh and V. Sundarapandian, Global chaos synchronization of WINDMI and Coullet chaotic systems using backstepping control, Far East Journal of Mathematical Sciences, 67(2012), 265-287.
- R. Suresh and V. Sundarapandian, Hybrid synchronization of n-scroll Chua and Lur'e chaotic systems using backstepping control via novel feedback, Archives of Control Sciences, 22(LVIII)(2012), 255-278.
- R. Suresh and V. Sundarapandian, Synchronization of n-scroll hyperchaotic Chua circuit using backstepping control with recursive feedback, Far East Journal of Math-ematical Sciences, 73(2013), 73-95.
- J. Lu, X. Wu, X. Han, and J. Lu, Adaptive feedback synchronization of a unified chaotic system , Phys. Lett. A, 329(2004), 327-333. https://doi.org/10.1016/j.physleta.2004.07.024
- J. H. Park, S. M. Lee and O. M. Kwon, Adaptive synchronization of Genesio-Tesi chaotic system via a novel feedback control, Physics Letters A, 371(2007), 263-270. https://doi.org/10.1016/j.physleta.2007.06.020
- J. H. Park, Adaptive control for modified projective synchronization of a four-dimensional chaotic system with uncertain parameters, J. Computational and Applied Math., 213(2008), 288-293. https://doi.org/10.1016/j.cam.2006.12.003
- Min Xiao, Jinde Cao, Synchronization of a chaotic electronic circuit system with cubic term via adaptive feedback control, Communication in Nonlinear Science and Numerical simulation, 14(2009), 3379-3388. https://doi.org/10.1016/j.cnsns.2008.12.023
- Yan-Wu Wang, Changyun Wen, Meng Yang and Jiang- Wen Xiao, Adaptive control and synchronization for chaotic systems with parametric uncertainities, Phys. Lett. A., 372(2008), 2409-2414. https://doi.org/10.1016/j.physleta.2007.11.066
- Zhiyong Ye and Cunbing Deng, Adaptive synchronization to a general non-autonomous chaotic system and it applications Nonlinear Analysis: Real World Applications, 13(2012), 840-849. https://doi.org/10.1016/j.nonrwa.2011.08.020
- J. C. Sprott, Chaos and Time- Series Analysis, Oxford University Press, New York, USA, 2003.
- P. Coullet, C. Tresser and A. Arneodo, Transition to stochasticity for a class of forced oscillators, Phys. Lett. A, 72(1979), 268-270. https://doi.org/10.1016/0375-9601(79)90464-X
- W. Hahn, The Stability of Motion, Berlin, Germany: Springer-Verlag, 1967.
Cited by
- Analysis, Control, and Synchronization of a 3-D Novel Jerk Chaotic System with Two Quadratic Nonlinearities vol.55, pp.3, 2015, https://doi.org/10.5666/KMJ.2015.55.3.563