DOI QR코드

DOI QR Code

Global Chaos Synchronization of WINDMI and Coullet Chaotic Systems using Adaptive Backstepping Control Design

  • Received : 2012.08.01
  • Accepted : 2013.07.26
  • Published : 2014.06.23

Abstract

In this paper, global chaos synchronization is investigated for WINDMI (J. C. Sprott, 2003) and Coullet (P. Coullet et al, 1979) chaotic systems using adaptive backstepping control design based on recursive feedback control. Our theorems on synchronization for WINDMI and Coullet chaotic systems are established using Lyapunov stability theory. The adaptive backstepping control links the choice of Lyapunov function with the design of a controller and guarantees global stability performance of strict-feedback chaotic systems. The adaptive backstepping control maintains the parameter vector at a predetermined desired value. The adaptive backstepping control method is effective and convenient to synchronize and estimate the parameters of the chaotic systems. Mainly, this technique gives the flexibility to construct a control law and estimate the parameter values. Numerical simulations are also given to illustrate and validate the synchronization results derived in this paper.

Keywords

References

  1. H. Fujisaka and T. Yamada, Stability theory of synchronized motion in coupled-oscillator systems, Progress of Theoretical Physics, 63(1983), 32-47.
  2. L. M. Pecora and T. L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett., 64(1990).
  3. L. M. Pecora and T. L. Carroll, Synchronizing chaotic circuits, IEEE Trans. Circ. Sys., 38(1991), 453-456. https://doi.org/10.1109/31.75404
  4. K. T. Alligood, T. Sauer and J. A. Yorke, Chaos: An Introduction to Dynamical Systems, Berlin, Germany: Springer-Verlag, 1997.
  5. Edward Ott, Chaos in Dynamical Systems, United Kingdom, Cambridge University Press, 2002.
  6. Y. M. Wang and H. Zhu, Generalized synchronization of continuous chaotic systems, Chaos, Solitons and Fractals, 27(2006), 97-101. https://doi.org/10.1016/j.chaos.2004.12.038
  7. Z. M. Ge and C. C. Chen Phase synchronization of coupled chaotic multiple time scales systems, Chaos, Solitons and Fractals, 20(2004), 639-647. https://doi.org/10.1016/j.chaos.2003.08.001
  8. J. Qiang, Projective synchronization of a new hyper chaotic Lorenz systems, Phys. Lett. A, 370(2007), 40-45. https://doi.org/10.1016/j.physleta.2007.05.028
  9. Y. Jian-Ping and L. Chang-Pin, Generalized projective synchronization for the chaotic Lorenz systems and the chaotic Chen system, Journal of Shanghai Univer-sity, 10(2006), 299-304. https://doi.org/10.1007/s11741-006-0004-y
  10. R. H. Li, W. Xu and S. Li, Adaptive generalized projective synchronization in different chaotic systems based on parameter identifiction, Phys. Lett. A, 367(2007), 199-206. https://doi.org/10.1016/j.physleta.2007.03.025
  11. V. Sundarapandian and P. Sarasu, Generalized projective synchronization of double-scroll chaotic systems using active feedback control, CCSIT 2012, Part-I, LNICST 84, Springer Heldelberg, Dordrecht, London, Newyork, pp. 111-118, 2012. Edited by N. Meganathan et., al.
  12. P. Sarasu, and V. Sundarapandian, Generalized projective synchronization of three-scroll chaotic systems via. active control, CCSIT 2012, Part-I, LNICST Vol. 84, Springer Heldelberg, Dordrecht, London, Newyork, pp. 124-133, 2012. Edited by N. Meganathan et., al.
  13. V. Sundarapandian and S. Sivaperumal, Anti-synchronization of hyperchaotic Lorenz and hyperchaotic Chen systems by adaptive control, International Journal of Automation and Computing, 9(2012), 274-279. https://doi.org/10.1007/s11633-012-0644-2
  14. V. Sundarapandian and R. Karthikeyan, Anti-synchronization of four wing chaotic systems via sliding mode control, International Journal of Signal System Control and Engineering Application, 4(2011), 18-25.
  15. K. Murali and M. Lakshmanan, Secure communication using a compound signal using sampled-data feedback, Applied Mathematics and Mechanics, 11(2003), 1309-1315.
  16. T. Yang, and L. O. Chua Generalized synchronization of chaos via linear transfor-mations, Internat. J. Bifur. Chaos, 9(1999), 215-219. https://doi.org/10.1142/S0218127499000092
  17. K. Murali and M. Lakshmanan, Chaos in Nonlinear Oscillators: Controlling and Synchronization, Singapore: World Scientific, 1996.
  18. S. K. Han, C. Kerrer, and Y. Kuramoto, D-phasing and bursting in coupled neural oscillators, Phys. Rev. Lett., 75(1995), 3190-3193. https://doi.org/10.1103/PhysRevLett.75.3190
  19. B. Blasius, A. Huppert and L. Stone, Complex dynamics and phase synchronization in spatially extended ecological system, Nature, 399(1999), 354-359. https://doi.org/10.1038/20676
  20. L. Kocarev, and U. Parlitz, General approach for chaotic synchronization with applications to communications, Phys. Rev. Lett., 74(1995), 5028-5030. https://doi.org/10.1103/PhysRevLett.74.5028
  21. Zuolei Wang, Chaos synchronization of an energy resource system based on linear control, Nonlinear Analysis: Real world Application,(article in press).
  22. Jiang Wang, Lisong Chen, Bin Deng, Synchronization of ghostburster neurons in external electrical stimulation via $H{\infty}$ variable universe fuzzy adaptive control, Chaos, Solitons and Fractals, 39(2009), 2076-2085. https://doi.org/10.1016/j.chaos.2007.06.070
  23. F. M. Moukam Kakmeni, J. P. Nguenang, and T. C. Kofane, Chaos synchronization in bi-axial magnets modeled by bloch equation, Chaos, Solitons and Fractals, 30(2006), 690-699. https://doi.org/10.1016/j.chaos.2005.10.094
  24. J. L. Hindmarsh and R. M. Rose, A model of neuronal bursting using 3-coupled 1 st order differential equations, Proc. Roy. Soc. Lond. B. Biol, 221(1984), 81-102.
  25. Yan-Qiu Che, Jiang Wang, Kai-Ming Tsang and Wai-Lok Chen, Unidirectional syn-chronization for Hindmarsh-Rose neurons via robust adaptive sliding mode control, Nonlinear Analysis: Real world Application, 11(2010), 1096-1104. https://doi.org/10.1016/j.nonrwa.2009.02.004
  26. Guang Zhao Zeng, Lan Sun Chen and Li Hua Sun, Complexity of an SIR epidemic dynamics model with impulsive vaccination control, Chaos, Solitons and Fractals, 26(2005), 495-505. https://doi.org/10.1016/j.chaos.2005.01.021
  27. Junxa Wang, Dianchen Lu and Lixin Tian, Global synchronization for time delay WINDMI system , Chaos, Solitons and Fractals, 30(2006), 629-635. https://doi.org/10.1016/j.chaos.2005.04.010
  28. W. Horton, R. S. Weigel and J. C. Sprott, Chaos and the limits of predictability for the solar-wind-driven magnetosphere-ionosphere system, Physics of Plasmas, 8(2003), 2946-2952.
  29. W. Horton and J. Doxas, A low-dimentional dynamical model for the solar wind driven geotail-ionosphere system, Journal of Geophysical Research A, 103(1998), 4561-4512. https://doi.org/10.1029/97JA02417
  30. J. P. Smith, J. L. Thiffeault and W. Horton, Dynamical range of WINDMI model: an exploration of possible magnetospheric plasma states, Journal of Geophysical Research A, 105(2000), 12983-12996. https://doi.org/10.1029/1999JA000218
  31. E. Ott, C. Grebogi and J. A. Yorke, Controlling chaos, Phys. Rev. Lett., 64(1990), 1196-1199. https://doi.org/10.1103/PhysRevLett.64.1196
  32. J. H. Park, and O. M. Kwon, A novel criterion for delayed feedback control of time-delay chaotic systems, Chaos, Solitons and Fractals, 17(2003), 709-716. https://doi.org/10.1016/S0960-0779(02)00487-3
  33. H. T. Yau, Design of adaptive sliding mode controller for chaos synchronization with uncertainties, Chaos, Solitons and Fractals, 22(2004), 341-347. https://doi.org/10.1016/j.chaos.2004.02.004
  34. V. Sundarapandian, Global chaos synchronization of the Pehlivan systems by sliding mode control, International J. Computer Science and Engineering, 03(2011), 2163-2169.
  35. V. Sundarapandian and R. Suresh, Global chaos synchronization for Rossler and Ar-neodo chaotic systems by nonlinear control, Far East Journal of Applied Mathematics, 44(2010), 137-148.
  36. V. Sundarapandian and R. Suresh, New results on the global chaos synchronization for Liu-Chen-Liu and Lu chaotic systems, PEIE 2010, CCIS Vol. 102, Springer-Verlag Berlin Heidelberg, pp. 20-27, 2010. Edited by V. V. Das, J. Stephen et., al.
  37. X. Wu and J. L, Parameter identification and backstepping control of uncertain Lu system , Chaos, Solitons and Fractals, 18(2003), 721-729. https://doi.org/10.1016/S0960-0779(02)00659-8
  38. Y. G. Yu and S. C. Zhang, Adaptive backstepping synchronization of uncertain chaotic systems, Chaos, Solitons and Fractals, 27(2006), 1369-1375. https://doi.org/10.1016/j.chaos.2005.05.001
  39. R. Suresh and V. Sundarapandian, Global chaos synchronization of WINDMI and Coullet chaotic systems using backstepping control, Far East Journal of Mathematical Sciences, 67(2012), 265-287.
  40. R. Suresh and V. Sundarapandian, Hybrid synchronization of n-scroll Chua and Lur'e chaotic systems using backstepping control via novel feedback, Archives of Control Sciences, 22(LVIII)(2012), 255-278.
  41. R. Suresh and V. Sundarapandian, Synchronization of n-scroll hyperchaotic Chua circuit using backstepping control with recursive feedback, Far East Journal of Math-ematical Sciences, 73(2013), 73-95.
  42. J. Lu, X. Wu, X. Han, and J. Lu, Adaptive feedback synchronization of a unified chaotic system , Phys. Lett. A, 329(2004), 327-333. https://doi.org/10.1016/j.physleta.2004.07.024
  43. J. H. Park, S. M. Lee and O. M. Kwon, Adaptive synchronization of Genesio-Tesi chaotic system via a novel feedback control, Physics Letters A, 371(2007), 263-270. https://doi.org/10.1016/j.physleta.2007.06.020
  44. J. H. Park, Adaptive control for modified projective synchronization of a four-dimensional chaotic system with uncertain parameters, J. Computational and Applied Math., 213(2008), 288-293. https://doi.org/10.1016/j.cam.2006.12.003
  45. Min Xiao, Jinde Cao, Synchronization of a chaotic electronic circuit system with cubic term via adaptive feedback control, Communication in Nonlinear Science and Numerical simulation, 14(2009), 3379-3388. https://doi.org/10.1016/j.cnsns.2008.12.023
  46. Yan-Wu Wang, Changyun Wen, Meng Yang and Jiang- Wen Xiao, Adaptive control and synchronization for chaotic systems with parametric uncertainities, Phys. Lett. A., 372(2008), 2409-2414. https://doi.org/10.1016/j.physleta.2007.11.066
  47. Zhiyong Ye and Cunbing Deng, Adaptive synchronization to a general non-autonomous chaotic system and it applications Nonlinear Analysis: Real World Applications, 13(2012), 840-849. https://doi.org/10.1016/j.nonrwa.2011.08.020
  48. J. C. Sprott, Chaos and Time- Series Analysis, Oxford University Press, New York, USA, 2003.
  49. P. Coullet, C. Tresser and A. Arneodo, Transition to stochasticity for a class of forced oscillators, Phys. Lett. A, 72(1979), 268-270. https://doi.org/10.1016/0375-9601(79)90464-X
  50. W. Hahn, The Stability of Motion, Berlin, Germany: Springer-Verlag, 1967.

Cited by

  1. Analysis, Control, and Synchronization of a 3-D Novel Jerk Chaotic System with Two Quadratic Nonlinearities vol.55, pp.3, 2015, https://doi.org/10.5666/KMJ.2015.55.3.563