• Title/Summary/Keyword: Symbol-rate

Search Result 546, Processing Time 0.023 seconds

Filter Size Determination Algorithms for Decision-Directed Channel Estimators in Wideband CDMA Mobile Communication Systems (광대역 CDMA이동통신 시스템의 결정지향 채널추정기를 위한 필터크기 결정 방법)

  • Rim, Min-Joong;Ryu, Chul;Ahn, Jae-Min
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.5
    • /
    • pp.171-180
    • /
    • 2003
  • CDMA(Code Division Multiple Access) mobile communication systems require accurate channel estimation in the receiver to compensate the fading distortions. Instantaneous channel estimates are obtained by dividing the received symbol by the transmitted symbol and then refined by filtering to reduce the estimation variance. In the channel estimation filter, the determination of the filter size is a very important task which greatly affects the estimation quality. While conventional methods usually use only velocity estimators to determine the channel estimation filter size, this paper proposes a filter size determination method for decision-directed channel estimators considering the symbol error rate and the signal-to-noise ratio in addition to the velocity of the mobile station. This paper shows that the symbol error rate and the signal-to-noise ratio are important factors for the determination of the channel estimation filter size.

Underwater acoustic communication performance in reverberant water tank (잔향음 우세 수조 환경에서의 수중음향 통신성능 분석)

  • Choi, Kang-Hoon;Hwang, In-Seong;Lee, Sangkug;Choi, Jee Woong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.2
    • /
    • pp.184-191
    • /
    • 2022
  • Underwater acoustic wave in shallow water is propagated through multipath that has a large delay spread causing Inter-Symbol Interference (ISI) and these characteristics deteriorate the performance in the communication system. In order to analyze the communication performance and investigate the correlation with multipath delay spread in a reverberant environment, an underwater acoustic communication experiment using Binary Phase-Shift Keying (BPSK) signals with symbol rates from 100 sym/s to 8000 sym/s was conducted in a 5 × 5 × 5 m3 water tank. The acoustic channels in a well-controlled tank environment had the characteristics of dense multipath delay spread due to multiple reflections from the interfaces and walls within the tank and showed the maximum excess delay of 40 ms or less, and the Root Mean Squared (RMS) delay spread of 8 ms or less. In this paper, the performances of Bit Error Rate (BER) and output Signal-to-Noise Ratio (SNR) were analyzed using four types of communication demodulation techniques. And the parameter, Symbol interval to Delay spread Ratio in reverberant environment (SDRrev), which is the ratio of symbol interval to RMS delay spread in the reverberant environment is defined. Finally, the SDRrev was compared to the BER and the output SNR. The results present the reference symbol rate in which high communication performance can be guaranteed.

Sparse decision feedback equalization for underwater acoustic channel based on minimum symbol error rate

  • Wang, Zhenzhong;Chen, Fangjiong;Yu, Hua;Shan, Zhilong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.617-627
    • /
    • 2021
  • Underwater Acoustic Channels (UAC) have inherent sparse characteristics. The traditional adaptive equalization techniques do not utilize this feature to improve the performance. In this paper we consider the Variable Adaptive Subgradient Projection (V-ASPM) method to derive a new sparse equalization algorithm based on the Minimum Symbol Error Rate (MSER) criterion. Compared with the original MSER algorithm, our proposed scheme adds sparse matrix to the iterative formula, which can assign independent step-sizes to the equalizer taps. How to obtain such proper sparse matrix is also analyzed. On this basis, the selection scheme of the sparse matrix is obtained by combining the variable step-sizes and equalizer sparsity measure. We call the new algorithm Sparse-Control Proportional-MSER (SC-PMSER) equalizer. Finally, the proposed SC-PMSER equalizer is embedded into a turbo receiver, which perform turbo decoding, Digital Phase-Locked Loop (DPLL), time-reversal receiving and multi-reception diversity. Simulation and real-field experimental results show that the proposed algorithm has better performance in convergence speed and Bit Error Rate (BER).

Complexity Limited Sphere Decoder and Its SER Performance Analysis (스피어 디코더에서 최대 복잡도 감소 기법 및 SER 성능 분석)

  • Jeon, Eun-Sung;Yang, Jang-Hoon;Kim, Bong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.6A
    • /
    • pp.577-582
    • /
    • 2008
  • In this paper, we present a scheme to overcome the worst case complexity of the sphere decoder. If the number of visited nodes reaches the threshold, the detected symbol vector is determined between two candidate symbol vectors. One candidate symbol vector is obtained from the demodulated output of ZF receiver which is initial stage of the sphere decoder. The other candidate symbol vector consists of two sub-symbol vectors. The first sub-symbol vector consists of lately visited nodes running from the most upper layer. The second one contains corresponding demodulated outputs of ZF receiver. Between these two candidate symbol vectors, the one with smaller euclidean distance to the received symbol vector is chosen as detected symbol vector. In addition, we show the upper bound of symbol error rate performance for the sphere decoder using the proposed scheme. In the simulation, the proposed scheme shows the significant reduction of the worst case complexity while having negligible SER performance degradation.

Symbol Synchronization Technique using Bit Decision Window for Non-Coherent IR-UWB Systems (Bit Decision 윈도우를 이용한 Noncoherent IR-UWB 수신기의 심벌 동기에 관한 연구)

  • Lee, Soon-Woo;Park, Young-Jin;Kim, Kwan-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.2
    • /
    • pp.15-21
    • /
    • 2007
  • In this paper, we propose a technique of a practical symbol acquisition and tracking using a low complex ADC and simple digital circuits for noncoherent asynchronous impulse-radio-based Ultra Wideband (IR-UWB) receiver based on energy detection. Compared to previous approaches of detecting an exact acquisition time that require much hardware resource, the proposed technique is to detect the target symbol by finding the symbol acquisition interval per symbol with a target symbo, thus the complexity of the complete signal processing and power consumption by ADC are reduced. To do this, we define the bit decision window (BDW) and analyze the relation between SNR, hardware resource, size of BDW and BER(Bit Error Rate). Using the results, the optimum BDW size for the minimum BER with limited hardware resource is selected. The proposed synchronization technique is verified with an aid of a simulator programmed by considering practical impulse channels.

A Rotational Decision-Directed Joint Algorithm of Blind Equalization Coupled with Carrier Recovery for 32-QAM Demodulation (회전결정 경계를 이용한 32-QAM 목조용 반송파 복구와 채널등화의 Joint 알고리즘)

  • Song, Jin-Ho;Hwang, Hu-Mor
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.2
    • /
    • pp.78-85
    • /
    • 2002
  • We introduce a rotational decision-directed joint algorithm of blind equalization coupled with carrier recovery for 32-QAM demodulation with high symbol rate. The proposed carrier recovery, which we call a rotational decision-directed carrier recovery(RDDCR), removes the residual phase difference by rotating the decision boundary for the kth received symbol by the frequency detector output of the (k-1)th received symbol. Since the RDDCR includes the function of PLL loop filter by rotating the decision boundary, it gives a simpler demodulator structure. The rotational decision-directed blind equalization(RDDBE) with the rotated decision boundary based on the Stop-and-Go Algorithm(SGA) operated during tracking the frequency offset by the RDDCR and removes intersymbol interference due to multipaths and channel noise. Test results show that symbol error rate of $10^{-3}$ is obtained before the forward error correction when SNR equals 15dB with 150KHz of carrier frequency offset and two multipaths, which is the channel condition for 32-QAM receiver.

Experimentation on The Recognition of Arithmetic Expressions (수식 표현의 인식에 관한 연구)

  • Lee, Young Kyo;Kim, Young Po
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.4
    • /
    • pp.29-35
    • /
    • 2014
  • The formula contains up between the text and the structural information, as well as their mathematical symbols. Research on-line or off-line recognition formula is underway actively used in various fields, and various forms of the equation are implemented recognition system. Although many documents are included in the various formulas, it is not easy to enter a formula into the computer. Recognition of the expression is divided into two processes of symbol recognition and structural analysis. After analyzing the location information of each character is specified to recognize the effective area after each symbol, and to the structure analysis based on the proximity between the characters is recognized as an independent single formula. Furthermore, analyzing the relationship between the front and back each time a combination of the position relationship between each symbol, and then to add the symbol which was able to easily update the structure of the entire formula. In this paper, by using a scanner to scan the book formula was used to interpret the meaning of the recognized symbol has a relative size and location information of the expression symbol. An algorithm to remove the formulas for calculation of the number of formula is present at the same time is proposed. Using the proposed algorithms to scan the books in the formula in order to evaluate the performance verification as 100% separation and showed the recognition rate equation.

Spectral encapsulation of OFDM systems based on orthogonalization for short packet transmission

  • Kim, Myungsup;Kwak, Do Young;Kim, Ki-Man;Kim, Wan-Jin
    • ETRI Journal
    • /
    • v.42 no.6
    • /
    • pp.859-871
    • /
    • 2020
  • A spectrally encapsulated (SE) orthogonal frequency-division multiplexing (OFDM) precoding scheme for wireless short packet transmission, which can suppress the out-of-band emission (OoBE) while maintaining the advantage of the cyclic prefix (CP)-OFDM, is proposed. The SE-OFDM symbol consists of a prefix, an inverse fast Fourier transform (IFFT) symbol, and a suffix generated by the head, center, and tail matrices, respectively. The prefix and suffix play the roles of a guard interval and suppress the OoBE, and the IFFT symbol has the same size as the discrete Fourier transform symbol in the CP-OFDM symbol and serves as an information field. Specifically, as the center matrix generating the IFFT symbol is orthogonal, data and pilot symbols can be allocated to any subcarrier without distinction. Even if the proposed precoder is required to generate OFDM symbols with spectral efficiency in the transmitter, a corresponding decoder is not required in the receiver. The proposed scheme is compared with CP-OFDM in terms of spectrum, OoBE, and bit-error rate.

Rate Control for OFDM-based Wireless Networks (OFDM 기반 무선 네트워크의 전송률 제어 기법)

  • Kim, Sung-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.9
    • /
    • pp.1633-1637
    • /
    • 2008
  • A protocol is proposed to control the rate of each subcarrier in OFDM-based wireless network systems. The proposed protocol adds an OFDM symbol in CTS frame defined in IEEE 802.11 standard. A receiver determines the rate of its subcarrier after it receives the RTS frame. The determined rate is added to OFDM symbol in CTS frame. In order to synchronize the rate information between the sender and the receiver, error recovery process is proposed. The performance improvement of the proposed method is shown by numerical results.

A Initial Channel Estimation Method Based on Extensive Preamble Utilization in MB-OFDM UWB System (프리엠블 확장 사용 기반 MB-OFDM UWB용 채널 추정 방식)

  • Jeong, Jin-Doo;Jin, Yong-Sun;Chong, Jong-Wha
    • 전자공학회논문지 IE
    • /
    • v.48 no.1
    • /
    • pp.30-35
    • /
    • 2011
  • In this paper, we propose a method to improve the performance of initial channel estimation (CE) for the multiband-OFDM (MB-OFDM) UWB. The performance of the initial CE can be generally improved as increasing the number of the used preamble symbols. The MB-OFDM specification presents two CE symbols per band in preamble format. The performance of CE estimation with two CE symbols may be satisfied in relatively high sensitivity -77.5 and -72.5 dBm for 200 Mbps and 480 Mbps data rate, respectively, but can not be enough in the degraded 55 Mbps and 110 Mbps sensitivities such as -83.5 and -80.5 dBm, respectively. A method proposed in this paper achieves the performance improvement by extending CE estimation region to packet synchronization (PS) symbols and frame synchronization (FS) symbols including two CE symbols. This can improve the CE performance in the degraded SNR and increase the link-margin by reducing the error rate in physical-layer header. The link-margin improvement obtained by the proposed CE preamble can induce the decrease of error-rate in physical-layer header and increase of communication throughput. Simulation results for the proposed initial method show that the performance is improved by about 0.7 dB at 10-4 bit-error-rate using '4' symbols than initial method using only two CE symbols.