DOI QR코드

DOI QR Code

Underwater acoustic communication performance in reverberant water tank

잔향음 우세 수조 환경에서의 수중음향 통신성능 분석

  • 최강훈 (한양대학교 해양융합과학과) ;
  • 황인성 (한양대학교 해양융합과학과) ;
  • 이상국 (국방과학연구소) ;
  • 최지웅 (한양대학교 ERICA 해양융합공학과)
  • Received : 2022.01.18
  • Accepted : 2022.02.23
  • Published : 2022.03.31

Abstract

Underwater acoustic wave in shallow water is propagated through multipath that has a large delay spread causing Inter-Symbol Interference (ISI) and these characteristics deteriorate the performance in the communication system. In order to analyze the communication performance and investigate the correlation with multipath delay spread in a reverberant environment, an underwater acoustic communication experiment using Binary Phase-Shift Keying (BPSK) signals with symbol rates from 100 sym/s to 8000 sym/s was conducted in a 5 × 5 × 5 m3 water tank. The acoustic channels in a well-controlled tank environment had the characteristics of dense multipath delay spread due to multiple reflections from the interfaces and walls within the tank and showed the maximum excess delay of 40 ms or less, and the Root Mean Squared (RMS) delay spread of 8 ms or less. In this paper, the performances of Bit Error Rate (BER) and output Signal-to-Noise Ratio (SNR) were analyzed using four types of communication demodulation techniques. And the parameter, Symbol interval to Delay spread Ratio in reverberant environment (SDRrev), which is the ratio of symbol interval to RMS delay spread in the reverberant environment is defined. Finally, the SDRrev was compared to the BER and the output SNR. The results present the reference symbol rate in which high communication performance can be guaranteed.

천해에서의 음파는 긴 지연시간을 가지는 다중경로를 통해 전달되며 이러한 특성은 통신에서 Inter-Symbol Interference(ISI)을 야기하기 때문에 성능을 악화시킨다. 본 논문에서는 잔향음 우세 환경에서의 통신성능을 분석하고 다중경로 지연시간과의 상관관계를 파악하기 위해 5 × 5 × 5 m3 수조에서 다양한 심볼 전송속도(100 sym/s to 8000 sym/s)를 갖는 Binary Phase-Shift Keying(BPSK) 신호를 이용하여 실험을 수행하였다. 제어가능한 수조 환경에서의 음향 채널은 수조 내 경계면 및 벽면에서의 다중반사로 인해 밀집한 다중경로 특성을 가지며 약 40 ms 이하의 최대 초과 지연과 8 ms 이하의 Root Mean Squared(RMS) 지연확산을 보였다. 본 논문에서는 4가지 통신 복조 기법을 이용하여 Bit Error Rate(BER) 성능과 출력 Signal-to-Noise Ratio(SNR) 성능을 분석하며 잔향음 우세 환경에서의 심볼 시간과 RMS 지연확산의 비율인 Symbol interval to Delay spread Ratio in reverberant environment(SDRrev)을 정의하여 통신성능이 보장될 수 있는 기준 심볼 전송속도를 제시한다.

Keywords

Acknowledgement

본 연구는 국방과학연구소(UD200010DD)의 지원에 의해 수행되었습니다.

References

  1. D. B. Kilfoyle and A. B. Baggeroer, "The state of the art in underwater acoustic telemetry," IEEE J. Ocean. Eng. 25, 4-27 (2000). https://doi.org/10.1109/48.820733
  2. T. C. Yang, "Properties of underwater acoustic communication channels in shallow water," J. Acoust. Soc. Am. 131, 129-145 (2012). https://doi.org/10.1121/1.3664053
  3. T. S. Rappaport, Rappaport, Wireless Communications : Principles and Practice (Prentice Hall, Upper Saddle River, 2002), pp. 177-248.
  4. D. Tse, Fundamentals of Wireless Communication (Cambridge University Press, New York, 2004), pp. 1-60.
  5. S.-U. Son, H. Kim, J. Joo, and J. W. Choi, "Multipath effects on high-frequency coherent acoustic communications in shallow water," JPN. J. Appl. Phys. 52, 07HG03 (2013). https://doi.org/10.7567/JJAP.52.07HG03
  6. S. Kim, S.-U. Son, H. Kim, K.-H. Choi, and J. W. Choi, "Estimate of passive time reversal communication performance in shallow water," J. Apply. Sci. 8, 23 (2018).
  7. P. A. van Walree and M. Smedsrud, "A discretetime channel simulator driven by measured scattering functions," IEEE J. Select. Areas Commun. 26, 1628-1637 (2008). https://doi.org/10.1109/JSAC.2008.081203
  8. H. C. Song, "Peer-reviewed technical communication: an overview of underwater time-reversal communication," IEEE J. Ocean. Eng. 41, 644-655 (2016). https://doi.org/10.1109/JOE.2015.2461712
  9. G. Edelmann, T. Akal, W. Hodgkiss, S. Kim, W. Kuperman, H. Song, and T. Akal, "An initial demonstration of underwater acoustic communication using time reversal mirror," IEEE J. Ocean. Eng. 27, 602-609 (2002). https://doi.org/10.1109/JOE.2002.1040942
  10. D. Rouseff, D. Jackson, W. Fox, C. Jones, J. Ritcey, and D. Dowling, "Underwater acoustic communications by passive-phase conjugation: Theory and experimental results," IEEE J. Ocean. Eng. 26, 821-831 (2001). https://doi.org/10.1109/48.972122
  11. H. C. Song, W. S. Hodgkiss, W. A. Kuperman, W. J. Higley, K. Raghukumar, T. Akal, and M. Stevenson, "Spatial diversity in passive time reversal communications," J. Acoust. Soc. Am. 120, 2067-2076 (2006). https://doi.org/10.1121/1.2338286
  12. H. C. Song and W. S. Hodgkiss, "Self-synchronization and spatial diversity of passive time reversal communication (L)," J. Acoust. Soc. Am. 137, 2974-2977 (2015). https://doi.org/10.1121/1.4919324
  13. J. Proakis and M. Salehi, Digital Communications (McGraw-Hill, New York, 2008), pp. 290-327.
  14. M. Haenggi, J. G. Andrews, F. Baccelli, O. Dousse, and M. Franceschetti, "Stochastic geometry and random graphs for the analysis and design of wireless networks," IEEE JSAC. 27, 1029-1046 (2009).