• Title/Summary/Keyword: Syllable Model

Search Result 78, Processing Time 0.026 seconds

Fake News Detection Using Deep Learning

  • Lee, Dong-Ho;Kim, Yu-Ri;Kim, Hyeong-Jun;Park, Seung-Myun;Yang, Yu-Jun
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1119-1130
    • /
    • 2019
  • With the wide spread of Social Network Services (SNS), fake news-which is a way of disguising false information as legitimate media-has become a big social issue. This paper proposes a deep learning architecture for detecting fake news that is written in Korean. Previous works proposed appropriate fake news detection models for English, but Korean has two issues that cannot apply existing models: Korean can be expressed in shorter sentences than English even with the same meaning; therefore, it is difficult to operate a deep neural network because of the feature scarcity for deep learning. Difficulty in semantic analysis due to morpheme ambiguity. We worked to resolve these issues by implementing a system using various convolutional neural network-based deep learning architectures and "Fasttext" which is a word-embedding model learned by syllable unit. After training and testing its implementation, we could achieve meaningful accuracy for classification of the body and context discrepancies, but the accuracy was low for classification of the headline and body discrepancies.

Rule-based Speech Recognition Error Correction for Mobile Environment (모바일 환경을 고려한 규칙기반 음성인식 오류교정)

  • Kim, Jin-Hyung;Park, So-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.10
    • /
    • pp.25-33
    • /
    • 2012
  • In this paper, we propose a rule-based model to correct errors in a speech recognition result in the mobile device environment. The proposed model considers the mobile device environment with limited resources such as processing time and memory, as follows. In order to minimize the error correction processing time, the proposed model removes some processing steps such as morphological analysis and the composition and decomposition of syllable. Also, the proposed model utilizes the longest match rule selection method to generate one error correction candidate per point, assumed that an error occurs. For the purpose of deploying memory resource, the proposed model uses neither the Eojeol dictionary nor the morphological analyzer, and stores a combined rule list without any classification. Considering the modification and maintenance of the proposed model, the error correction rules are automatically extracted from a training corpus. Experimental results show that the proposed model improves 5.27% on the precision and 5.60% on the recall based on Eojoel unit for the speech recognition result.

End-to-end Korean Document Summarization using Copy Mechanism and Input-feeding (복사 방법론과 입력 추가 구조를 이용한 End-to-End 한국어 문서요약)

  • Choi, Kyoung-Ho;Lee, Changki
    • Journal of KIISE
    • /
    • v.44 no.5
    • /
    • pp.503-509
    • /
    • 2017
  • In this paper, the copy mechanism and input feeding are applied to recurrent neural network(RNN)-search model in a Korean-document summarization in an end-to-end manner. In addition, the performances of the document summarizations are compared according to the model and the tokenization format; accordingly, the syllable-unit, morpheme-unit, and hybrid-unit tokenization formats are compared. For the experiments, Internet newspaper articles were collected to construct a Korean-document summary data set (train set: 30291 documents; development set: 3786 documents; test set: 3705 documents). When the format was tokenized as the morpheme-unit, the models with the input feeding and the copy mechanism showed the highest performances of ROUGE-1 35.92, ROUGE-2 15.37, and ROUGE-L 29.45.

Error Correction Methode Improve System using Out-of Vocabulary Rejection (미등록어 거절을 이용한 오류 보정 방법 개선 시스템)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of Digital Convergence
    • /
    • v.10 no.8
    • /
    • pp.173-178
    • /
    • 2012
  • In the generated model for the recognition vocabulary, tri-phones which is not make preparations are produced. Therefore this model does not generate an initial estimate of parameter words, and the system can not configure the model appear as disadvantages. As a result, the sophistication of the Gaussian model is fall will degrade recognition. In this system, we propose the error correction system using out-of vocabulary rejection algorithm. When the systems are creating a vocabulary recognition model, recognition rates are improved to refuse the vocabulary which is not registered. In addition, this system is seized the lexical analysis and meaning using probability distributions, and this system deactivates the string before phoneme change was applied. System analysis determine the rate of error correction using phoneme similarity rate and reliability, system performance comparison as a result of error correction rate improve represent 2.8% by method using error patterns, fault patterns, meaning patterns.

Automatic Word Spacing of the Korean Sentences by Using End-to-End Deep Neural Network (종단 간 심층 신경망을 이용한 한국어 문장 자동 띄어쓰기)

  • Lee, Hyun Young;Kang, Seung Shik
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.11
    • /
    • pp.441-448
    • /
    • 2019
  • Previous researches on automatic spacing of Korean sentences has been researched to correct spacing errors by using n-gram based statistical techniques or morpheme analyzer to insert blanks in the word boundary. In this paper, we propose an end-to-end automatic word spacing by using deep neural network. Automatic word spacing problem could be defined as a tag classification problem in unit of syllable other than word. For contextual representation between syllables, Bi-LSTM encodes the dependency relationship between syllables into a fixed-length vector of continuous vector space using forward and backward LSTM cell. In order to conduct automatic word spacing of Korean sentences, after a fixed-length contextual vector by Bi-LSTM is classified into auto-spacing tag(B or I), the blank is inserted in the front of B tag. For tag classification method, we compose three types of classification neural networks. One is feedforward neural network, another is neural network language model and the other is linear-chain CRF. To compare our models, we measure the performance of automatic word spacing depending on the three of classification networks. linear-chain CRF of them used as classification neural network shows better performance than other models. We used KCC150 corpus as a training and testing data.

A Study on the Korean Broadcasting Speech Recognition (한국어 방송 음성 인식에 관한 연구)

  • 김석동;송도선;이행세
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.53-60
    • /
    • 1999
  • This paper is a study on the korean broadcasting speech recognition. Here we present the methods for the large vocabuary continuous speech recognition. Our main concerns are the language modeling and the search algorithm. The used acoustic model is the uni-phone semi-continuous hidden markov model and the used linguistic model is the N-gram model. The search algorithm consist of three phases in order to utilize all available acoustic and linguistic information. First, we use the forward Viterbi beam search to find word end frames and to estimate related scores. Second, we use the backword Viterbi beam search to find word begin frames and to estimate related scores. Finally, we use A/sup */ search to combine the above two results with the N-grams language model and to get recognition results. Using these methods maximum 96.0% word recognition rate and 99.2% syllable recognition rate are achieved for the speaker-independent continuous speech recognition problem with about 12,000 vocabulary size.

  • PDF

Error Correction for Korean Speech Recognition using a LSTM-based Sequence-to-Sequence Model

  • Jin, Hye-won;Lee, A-Hyeon;Chae, Ye-Jin;Park, Su-Hyun;Kang, Yu-Jin;Lee, Soowon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.10
    • /
    • pp.1-7
    • /
    • 2021
  • Recently, since most of the research on correcting speech recognition errors is based on English, there is not enough research on Korean speech recognition. Compared to English speech recognition, however, Korean speech recognition has many errors due to the linguistic characteristics of Korean language, such as Korean Fortis and Korean Liaison, thus research on Korean speech recognition is needed. Furthermore, earlier works primarily focused on editorial distance algorithms and syllable restoration rules, making it difficult to correct the error types of Korean Fortis and Korean Liaison. In this paper, we propose a context-sensitive post-processing model of speech recognition using a LSTM-based sequence-to-sequence model and Bahdanau attention mechanism to correct Korean speech recognition errors caused by the pronunciation. Experiments showed that by using the model, the speech recognition performance was improved from 64% to 77% for Fortis, 74% to 90% for Liaison, and from 69% to 84% for average recognition than before. Based on the results, it seems possible to apply the proposed model to real-world applications based on speech recognition.

A Comparative Study on Modelling Readability Formulas: Focus on Primary and Secondary Textbooks (텍스트의 언어적 난이도 측정 공식 비교 연구 - 초중고 교과서를 중심으로 -)

  • Choe, In-Sook
    • Journal of the Korean Society for information Management
    • /
    • v.22 no.4 s.58
    • /
    • pp.173-195
    • /
    • 2005
  • The purpose of this study is to clarify whether readability formulas based on linguistic factors are suitable for secondary and older primary age texts. A comparison among fomulas for primary age texts, some for both primary and secondary age, and some for secondary age revealed that exclusive ones for narrow age range were more effective. A model estimating readability scores from the average number of sentences in paragraphs or a model with two factors, the average number of sentences and paragraphs in texts was found to be good one for secondary age. While a model based on total number of unique syllables or a model from total number of unique syllables and new syllable occurrence ratio was good for primary age.

Morpheme Recovery Based on Naïve Bayes Model (NB 모델을 이용한 형태소 복원)

  • Kim, Jae-Hoon;Jeon, Kil-Ho
    • The KIPS Transactions:PartB
    • /
    • v.19B no.3
    • /
    • pp.195-200
    • /
    • 2012
  • In Korean, spelling change in various forms must be recovered into base forms in morphological analysis as well as part-of-speech (POS) tagging is difficult without morphological analysis because Korean is agglutinative. This is one of notorious problems in Korean morphological analysis and has been solved by morpheme recovery rules, which generate morphological ambiguity resolved by POS tagging. In this paper, we propose a morpheme recovery scheme based on machine learning methods like Na$\ddot{i}$ve Bayes models. Input features of the models are the surrounding context of the syllable which the spelling change is occurred and categories of the models are the recovered syllables. The POS tagging system with the proposed model has demonstrated the $F_1$-score of 97.5% for the ETRI tree-tagged corpus. Thus it can be decided that the proposed model is very useful to handle morpheme recovery in Korean.

Orthographic and phonological links in Korean lexical processing (한국어 어휘 처리 과정에서 글짜 정보와 발음 정보의 연결성)

  • Kim, Jee-Sun;Taft, Marcus
    • Annual Conference on Human and Language Technology
    • /
    • 1995.10a
    • /
    • pp.211-214
    • /
    • 1995
  • At what level of orthographic representation is phonology linked in thelexicon? Is it at the whole word level, the syllable level, letter level, etc? This question can be addressed by comparing the two scripts used in Korean, logographic Hanmoon and alphabetic/syllabic Hangul, on a task where judgements must be made about the phonology of a visually presented word. Four experiments are reported using a "homophone decision task" and manipulating the sub-lexical relationship between orthography and phonology in Hanmoon and Hangul, and the lexical status of the stimuli. Hangul words showed a much higher error rate in judging whether there was another word identically pronounced than both Hangul nonwords and Hanmoon words. It is concluded that the relationship between orthography and phonology in the lexicon differs according tn the type of script owing to the availability of sub-lexical information: the process of making a homophone derision is based on a spread of activation exclusively among lexical entries, from orthography to phonology and vice versa (called "Orthography-Phonology-Orthography Rebound" or "OPO Rebound"). The results are explained within the mulitilevel interactive activation model with orthographic units linked to phonological units at each level.

  • PDF