Abstract
This paper is a study on the korean broadcasting speech recognition. Here we present the methods for the large vocabuary continuous speech recognition. Our main concerns are the language modeling and the search algorithm. The used acoustic model is the uni-phone semi-continuous hidden markov model and the used linguistic model is the N-gram model. The search algorithm consist of three phases in order to utilize all available acoustic and linguistic information. First, we use the forward Viterbi beam search to find word end frames and to estimate related scores. Second, we use the backword Viterbi beam search to find word begin frames and to estimate related scores. Finally, we use A/sup */ search to combine the above two results with the N-grams language model and to get recognition results. Using these methods maximum 96.0% word recognition rate and 99.2% syllable recognition rate are achieved for the speaker-independent continuous speech recognition problem with about 12,000 vocabulary size.
이 논문은 한국 방송 음성 인식에 관한 연구이다. 여기서 우리는 대규모 어휘를 갖는 연속 음성 인식을 위한 방법을 제시한다. 주요 관점은 언어 모델과 탐색 방법이다. 사용된 음성 모델은 기본음소 Semi-continuous HMM이고 언어 모델은 N-gram 방법이다. 탐색 방법은 음성과 언어 정보를 최대한 활용하기 위해 3단계의 방법을 사용하였다. 첫째로, 단어의 끝 부분과 그에 관련된 정보를 만들기 위한 순방향 Viterbi Beam탐색을 하였으며, 둘째로 단어 의 시작 부분과 그에 관련된 정보를 만드는 역방향 Viterbi Beam탐색, 그리고 마지막으로 이들 두 결과와 확률적인 언어 모델을 결합하여 최종 인식결과를 얻기 위해 A/sup */ 탐색을 한다. 이 방법을 사용하여 12,000개의 단어에 대한 화자 독립으로 최고 96.0%의 단어 인식률과 99.2%의 음절 인식률을 얻었다.