• Title/Summary/Keyword: Switching ripple current

Search Result 282, Processing Time 0.035 seconds

Analysis of the Output Ripple of the DC-DC Boost Charger for Li-Ion Batteries

  • Nguyen, Van-Sang;Tran, Van-Long;Choi, Woojin;Kim, Dae-Wook
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.135-142
    • /
    • 2014
  • In the design of battery chargers, limiting the output ripple current according to the manufacturer's recommendation is important for reliable service and extended battery life. Ripple components can cause internal heating of the battery and thus reduce the service life of the battery. Care must be exerted in the design of the switching converter for the charge application through the accurate estimation of the output current ripple value. This study proposes a method to reduce the output current ripple of the converter and presents a detailed analysis of the output current ripple of the DC-DC boost converter to provide a guideline for the design of the battery charger.

A Study on Capacitance Selection Method of DC-link Capacitor Using Current Ripple (전류 리플을 이용한 직류단 캐패시터의 용량 선정 기법에 관한 연구)

  • Kim, Yong-Hyu;Lee, Byung-Hoon;Hwang, Seon-Hwan
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.1
    • /
    • pp.47-53
    • /
    • 2022
  • This paper proposes a method for selecting the capacitance of DC-link capacitors of inverters. In general, the DC-link capacitance of the inverter system must be considered for DC-link voltage, ripple current, switching frequency, ripple voltage, and pulse-width modulation techniques. Therefore, the appropriate capacitance can be determined by finding the rms and peak values of the ripple current of the capacitor. In this paper, the process of extracting the ripple current of DC-link capacitor is described in detail. In addition, the simple method for finding DC-link capacitor capacitance using the result value is presented through the simulations.

Operation of Brushless DC Motor using the Adaptive hysteresis bandwidth control algorithm (적응 Hysteresis band폭 제어 알고리즘을 이용한 Brushless DC Motor의 운전)

  • Cho, Kye-Seok;Kim, Kwang-Yeon;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.171-174
    • /
    • 1991
  • Among the various PWM methods, the hysteresis-band current control PWM method is popularly used because of its simplicity of implementation, fast response characteristics and inherent peak current limiting capability. However, the current control PWM method with a fixed hysteresis-band has the disadvantage that switching frequency decreases and current ripple is high as the increasing of back-EMF. As a result, load current contains excess harmonics. This paper describes a adaptive hysteresis-bandwidth control algorithm so as to maintain the average switching frequency constant and decrease the current ripple where the hysteresis bandwidth is derived as a relation with the switching frequency. This control algorithm is applied to the surface-type brushless DC motor with separated winding and using the computer simulation, the validity of its algorithm is proved.

  • PDF

DCM Frequency Control Algorithm for Multi-Phase DC-DC Boost Converters for Input Current Ripple Reduction

  • Joo, Dong-Myoung;Kim, Dong-Hee;Lee, Byoung-Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2307-2314
    • /
    • 2015
  • In this paper, a discontinuous conduction mode (DCM) frequency control algorithm is proposed to reduce the input current ripple of a multi-phase interleaved boost converter. Unlike conventional variable duty and constant frequency control, the proposed algorithm controls the switching frequency to regulate the output voltage. By fixing the duty ratio at 1/N in the N-phase interleaved boost converter, the input current ripple can be minimized by ripple cancellation. Furthermore, the negative effects of the diode reverse recovery current are eliminated because of the DCM characteristic. A frequency controller is designed to employ the proposed algorithm considering the magnetic permeability change. The proposed algorithm is analyzed in the frequency domain and verified by a 600 W three-phase boost converter prototype that achieved 57% ripple current reduction.

Analysis of Interleaved Boost Power Factor Corrector (Interleaved 승압형 역률보상 컨버터의 해석)

  • Heo, Tae-Won;Park, Jee-Ho;Roh, Tae-Kyun;Chung, Jae-Lyoun;Kim, Dong-Wan;Woo, Jung-In
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.4
    • /
    • pp.186-192
    • /
    • 2002
  • In this paper, interleaved boost power factor corrector(IBPFC) is applied as a pre-regulator in switch mode power supply. IBPFC can reduce input current ripple and effectively increase the switching frequency without increasing the switching losses, because input current is divided each 50% by two switching devices. IBPFC can be classified as three cases by duty ratio condition in continuous current mode and be carried out state space average modeling. According to the modeling, steady and transient state analysis is performed by steady elements and perturbation element. Control transfer function is derived for design of control system.

Novel Zero-Voltage and Zero-Current-Switching (ZVZCS) Full Bridge PWM Converter with a Low Output Current Ripple (낮은 인덕터 맥동전류를 가지는 새로운 영전압 영전류 스위칭 풀 브릿지 DC/DC 컨버터)

  • Baek, J.W.;Cho, J.G.;Yoo, D.W.;Song, D.I.;Rim, G.H.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2204-2206
    • /
    • 1997
  • A novel zero voltage and zero current switching (ZVZCS) full bridge (FB) PWM converter with a low output current ripple is proposed. The proposed circuit improve the demerits of the previously presented ZVBCS-FB-PWM converters[5-8] such as use of lossy components or additional active switches. A simple auxiliary circuit which includes neither lossy components nor active switches provides ZVZCS conditions to primary switches, ZVS for leading-leg switches and ZCS for lagging-leg switches. In addition, this proposed circuit reduces a output current ripple considerably. Many advantages including simple circuit topology, high efficiency, low cost and low current ripple make the new converter attractive far high power (> 1kW) applications.

  • PDF

Analysis, Design and Implementation of a Soft Switching DC/DC Converter

  • Lin, Bor-Ren
    • Journal of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.20-30
    • /
    • 2013
  • This paper presents a soft switching DC/DC converter for high voltage application. The interleaved pulse-width modulation (PWM) scheme is used to reduce the ripple current at the output capacitor and the size of output inductors. Two converter cells are connected in series at the high voltage side to reduce the voltage stresses of the active switches. Thus, the voltage stress of each switch is clamped at one half of the input voltage. On the other hand, the output sides of two converter cells are connected in parallel to achieve the load current sharing and reduce the current stress of output inductors. In each converter cell, a half-bridge converter with the asymmetrical PWM scheme is adopted to control power switches and to regulate the output voltage at a desired voltage level. Based on the resonant behavior by the output capacitance of power switches and the transformer leakage inductance, active switches can be turned on at zero voltage switching (ZVS) during the transition interval. Thus, the switching losses of power MOSFETs are reduced. The current doubler rectifier is used at the secondary side to partially cancel ripple current. Therefore, the root-mean-square (rms) current at output capacitor is reduced. The proposed converter can be applied for high input voltage applications such as a three-phase 380V utility system. Finally, experiments based on a laboratory prototype with 960W (24V/40A) rated power are provided to demonstrate the performance of proposed converter.

Analysis of the Commutation Phenomenon in Brushless DC Motor with Hysteresis Current Regulator (히스테리시스 전류제어기 구동 BLDCM의 전류(轉流)현상 해석)

  • Kang, Seog-Joo;Kim, Gwang-Heon;Won, Jong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.685-688
    • /
    • 1992
  • This paper studies the commutation phenomenon in the Brushless DC Motor with the trapezoidal BEMF waveform. It is shown that the torque ripple am the speed ripple due to the phase commutation depend on driving sytem, operating speed am load condition. The effects of resistance and BEMF flat width on torque ripple are considered. Speed - torque characteristics of the motor is presented considering the phase commutation. Uncommutating current control method can attenuate the torque ripple in the low speed region, and also minimize the switching loss am switching frequency. In this paper, the commutation phenomena are verified by analytical formulation and simulation.

  • PDF

Analysis of DC Link Ripple Currents in Three-Phase AC/DC/AC PWM Converters (3상 AC/DC/AC PWM 컨버터의 직류링크 리플전류 해석)

  • Park Young-Wook;Lee Dong-Choon;Seok Jul-Ki
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.223-226
    • /
    • 2001
  • In this paper, dc link ripple currents for three-phase ac/dc/ac PWM converters are analyzed in a frequency domain. The expression of the harmonic currents is developed by using switching functions and exponential Fourier series expansion. The dc link ripple currents with regard to power factor and modulation index are investigated. In addition, the effect of the displacement angle between the switching periods of line-side converters and load-side inverters on the do link ripple current is studied. The result of the do link current analysis is helpful in specifying the dc link capacitor size and its life time estimation.

  • PDF

Construct of Electronics Load System using the Multi-level Interiver Converter (다중전류레벨 인터리버 컨버터를 이용한 전자부하 시스템 구성)

  • Moon, Hyeon-Cheol;Song, Kwang-Cheol;Lee, Chang-Ho;Park, Seong-Mi;Park, Sung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.989-998
    • /
    • 2020
  • Recently, demands for large-capacity electronic loads are increasing in various industries such as a reliability test for the performance of a DC power supply device or a dummy-load for improving the stability of an independent microgrid to be actively built in the future. The electronic load required in these various fields requires an operation such as a continuously variable resistance load while minimizing the switching harmonic component generated in the electric load current in order to reduce the influence of interference from the load peripheral device. Electronic loads require a system that minimizes switching current ripple for load control. Therefore, in this paper, we propose a three-level module converter structure to reduce the current ripple of an electronic load, and a multilevel interleaved power converter topology to reduce the current ripple. The validity of the proposed electronic load, 3-level 6 interleaver converter, was verified by simulation and experiment. In addition, the user's convenience was provided by applying the emotional command curve interface method.