• Title/Summary/Keyword: Switching ripple current

Search Result 282, Processing Time 0.025 seconds

Design of Interleaved Boost Power Factor Preregulator (Interleaved 승압형 역률 전치보상 컨버터의 설계)

  • Heo, T.W.;Noh, T.G.;Jung, J.R.;Ahn, I.M.;Son, Y.D.;Woo, J.I.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1123-1125
    • /
    • 2002
  • In this paper, interleaved boost converter is applied as a pre-regulator in switch mode power supply. Interleaved Boost Power Factor Preregulator (IBPFP) can reduce input current ripple as a simple voltage control loop only without inner current loop, because input current is divided each 50% by two switching devices. IBPFP can be classified as three cases from duty ratio condition in continuous current mode and be carried out state space averaging small signal modeling. According to modeling, the PID controller is applied and voltage control loop is constructed for suitable design condition. From frequency domain analysis, it is verified that control system is satisfied with design condition of switch mode power supply.

  • PDF

A New Voltage Control Method in CRPWM for Improving Distortion and Efficiency at Load Side (출력 파형 왜율과 효율 개선을 위한 CRPWM의 전압 제어 방법)

  • Ahn, Sung-Chan;Song, Jhong-Whan;Cho, Kyu-Bok;Won, Jhong-Su
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1104-1107
    • /
    • 1992
  • Voltage controlled current regulated PWM(pulse width modulation) of VSI (voltage source inverter) is proposed. Adopting one degree of freedom, the voltage, the current controller shows much more improvement than conventional ones not using this method. The voltage controller or this proposal needs load's parameters, torque value, rotational speed. This voltage controller is located at converter part which links AC source and DC bus. With this proposed method, duty ratio of the inverter's switching is nearly unity for all speed and torque range. Hence, this method gets many advantages such as reducing current ripple, thermal loss, and noises and improving control performances. Theoretical approach to this voltage-current controller is performed, and the results are presented.

  • PDF

Performance Improvement of Stepping Motor Driver (2상 스테핑 모터 드라이버의 성능개선)

  • Kim, Il-Hwan;Oh, Tae-Seok
    • Journal of Industrial Technology
    • /
    • v.24 no.A
    • /
    • pp.91-97
    • /
    • 2004
  • This paper describes the design of a 2-phase stepping motor driver using CPLD(Complex Programmable Logic Device). The driver IC such as L297(SGS-Thomson Microelectronics), which is mostly used has some difficulties in PWM control because of the switching noise of power MOSFETs. It causes current ripple and acoustic noise. To improve theses characteristics, we proposed a new current control method that the output PWM frequency is almost constant using a digital filter. Also we proposed constant current method for 1-2 phase(half step) excitation. The proposed method is implemented with CPLD(Xilinx, XC9572-PC44). Experimental results show the effectiveness of the proposed method.

  • PDF

Analysis, Design and Implementation of an Interleaved Single-Stage AC/DC ZVS Converters

  • Lin, Bor-Ren;Huang, Shih-Chuan
    • Journal of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.258-267
    • /
    • 2012
  • An interleaved single-stage AC/DC converter with a boost converter and an asymmetrical half-bridge topology is presented to achieve power factor correction, zero voltage switching (ZVS) and load voltage regulation. Asymmetric pulse-width modulation (PWM) is adopted to achieve ZVS turn-on for all of the switches and to increase circuit efficiency. Two ZVS half-bridge converters with interleaved PWM are connected in parallel to reduce the ripple current at input and output sides, to control the output voltage at a desired value and to achieve load current sharing. A center-tapped rectifier is adopted at the secondary side of the transformers to achieve full-wave rectification. The boost converter is operated in discontinuous conduction mode (DCM) to automatically draw a sinusoidal line current from an AC source with a high power factor and a low current distortion. Finally, a 240W converter with the proposed topology has been implemented to verify the performance and feasibility of the proposed converter.

STUDY ON CONTROL SCHEME FOR IMPROVEMENT OF THREE PHASE CURRENT-CONTROLLED PWM RECTIFIER (3상 전류제어형 PWM 정류기의 특성 개선을 위한 제어기법에 관한 연구)

  • Park, Min-Ho;Choi, Jae-Ho;Ji, Jun-Keun;Kang, Jun-Koo
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.367-370
    • /
    • 1987
  • A high-performance PWM technique in current-controlled AC to DC converter is introduced. This converter used information about source voltage vectors to make good PWM switching pattern that it can control the DC output voltage with reduced ripple factor and rapid response. In addition to reduction of harmonic current, AC input power factor can be controlled to leading or lagging by current reference. Simulation was made based on analytical approach and it showed a good agreement with theory.

  • PDF

A Single-Phase Current-Source Bidirectional Converter for V2G Applications

  • Han, Hua;Liu, Yonglu;Sun, Yao;Wang, Hui;Su, Mei
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.458-467
    • /
    • 2014
  • In this paper, a single-phase current-source bidirectional converter topology for V2G applications is proposed. The proposed converter consists of a single-phase current-source rectifier (SCSR) and an auxiliary switching network (ASN). It offers bidirectional power flow between the battery and the grid in the buck or boost mode and expands the output voltage range, so that it can be compatible with different voltage levels. The topology structure and operating principles of the proposed converter are analyzed in detail. An indirect control algorithm is used to realize the charging and discharging of the battery. Finally, the semiconductor losses and system efficiency are analyzed. Simulation and experimental results demonstrate the validity and effectiveness of the proposed topology.

Reduced-order Mapping and Design-oriented Instability for Constant On-time Current-mode Controlled Buck Converters with a PI Compensator

  • Zhang, Xi;Xu, Jianping;Wu, Jiahui;Bao, Bocheng;Zhou, Guohua;Zhang, Kaitun
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1298-1307
    • /
    • 2017
  • The constant on-time current-mode controlled (COT-CMC) switching dc-dc converter is stable, with no subharmonic oscillation in its current loop when a voltage ripple in its outer voltage loop is ignored. However, when its output capacitance is small or its feedback gain is high, subharmonic oscillation may occur in a COT-CMC buck converter with a proportional-integral (PI) compensator. To investigate the subharmonic instability of COT-CMC buck converters with a PI compensator, an accurate reduced-order asynchronous-switching map model of a COT-CMC buck converter with a PI compensator is established. Based on this, the instability behaviors caused by output capacitance and feedback gain are investigated. Furthermore, an approximate instability condition is obtained and design-oriented stability boundaries in different circuit parameter spaces are yielded. The analysis results show that the instability of COT-CMC buck converters with a PI compensator is mainly affected by the output capacitance, output capacitor equivalent series resistance (ESR), feedback gain, current-sensing gain and constant on-time. The study results of this paper are helpful for the circuit parameter design of COT-CMC switching dc-dc converters. Experimental results are provided to verify the analysis results.

Characteristic analysis of the current type high frequency resonant DC - DC converter (전류형 고주파 공진 DC-DC 컨버터의 특성해석)

  • 황계호;남승식;김동희;심광열;안항목
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.1
    • /
    • pp.86-93
    • /
    • 2003
  • This paper describes that the resonant tank type DC-DC converter consist of reactor and capacitor resonant tank circuit for increased the output current. This circuit configuration is composed of the resonant tank circuit used resonant capacitor and reactor and the capacitor connected in switch are a common using by resonance capacitor and ZVS(Zero Voltage Switching) capacitor. Therefore, the proposed converter can reduce a switching losses, noise, and voltage stress at turn-on and turn-on and has an advantage which is able to operating safely in load short, because DC reactor is connected with resonance reactor in order to supply a fixed current with low ripple from DC power supply. The analysis of proposed circuit uses normalized parameters and characteristic estimation is generally described the proposed circuit with the characteristics of power and output voltage etc. Also, design is based on the characteristic estmations in each step. Hence, We conform a rightfulness theoretical analysis by comparing a theoretical values and experimental values obtained from experiment.

Implementation of a High Efficiency Grid-Tied Multi-Level Photovoltaic Power Conditioning System Using Phase Shifted H-Bridge Modules

  • Lee, Jong-Pil;Min, Byung-Duk;Yoo, Dong-Wook
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.296-303
    • /
    • 2013
  • This paper proposes a high efficiency three-phase cascaded phase shifted H-bridge multi-level inverter without DC/DC converters for grid-tied multi string photovoltaic (PV) applications. The cascaded H-bridge topology is suitable for PV applications since each PV module can act as a separate DC source for each cascaded H-bridge module. The proposed phase shifted H-bridge multi-level topology offers advantages such as operation at a lower switching frequency and a lower current ripple when compared to conventional two level topologies. It is also shown that low ripple sinusoidal current waveforms are generated with a unity power factor. The control algorithm permits the independent control of each DC link voltage with a maximum power point for each string of PV modules. The use of the controller area network (CAN) communication protocol for H-bridge multi-level inverters, along with localized PWM generation and PV voltage regulation are implemented. It is also shown that the expansion and modularization capabilities of the H-bridge modules are improved since the individual inverter modules operate more independently. The proposed topology is implemented for a three phase 240kW multi-level PV power conditioning system (PCS) which has 40kW H-bridge modules. The experimental results show that the proposed topology has good performance.

Implementation of an Interleaved AC/DC Converter with a High Power Factor

  • Lin, Bor-Ren;Lin, Li-An
    • Journal of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.377-386
    • /
    • 2012
  • An interleaved bridgeless buck-boost AC/DC converter is presented in this paper to achieve the characteristics of low conduction loss, a high power factor and low harmonic and ripple currents. There are only two power semiconductors in the line current path instead of the three power semiconductors in a conventional boost AC/DC converter. A buck-boost converter operated in the boundary conduction mode (BCM) is adopted to control the active switches to achieve the following characteristics: no diode reverse recovery problem, zero current switching (ZCS) turn-off of the rectifier diodes, ZCS turn-on of the power switches, and a low DC bus voltage to reduce the voltage stress of the MOSFETs in the second DC/DC converter. Interleaved pulse-width modulation (PWM) is used to control the switches such that the input and output ripple currents are reduced such that the output capacitance can be reduced. The voltage doubler topology is adopted to double the output voltage in order to extend the useable energy of the capacitor when the line voltage is off. The circuit configuration, principle operation, system analysis, and a design example are discussed and presented in detail. Finally, experiments on a 500W prototype are provided to demonstrate the performance of the proposed converter.