• Title/Summary/Keyword: Switched inductor

검색결과 69건 처리시간 0.059초

Neutral-point Potential Balancing Method for Switched-Inductor Z-Source Three-level Inverter

  • Wang, Xiaogang;Zhang, Jie
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.1203-1210
    • /
    • 2017
  • Switched-inductor (SL) Z-source three-level inverter is a novel high power topology. The SL based impedance network can boost the input dc voltage to a higher value than the single LC impedance network. However, as all the neutral-point-clamped (NPC) inverters, the SL Z-source three-level inverter has to balance the neutral-point (NP) potential too. The principle of the inverter is introduced and then the effects of NP potential unbalance are analyzed. A NP balancing method is proposed. Other than the methods for conventional NPC inverter without Z-source impedance network, the upper and lower shoot-through durations are corrected by the feedforward compensation factors. With the proposed method, the NP potential is balanced and the voltage boosting ability of the Z-source network is not affected obviously. Simulations are conducted to verify the proposed method.

A Novel Negative-Output High Step-up Ratio DC-DC Converter Based on Switched-Inductor Cell

  • Kim, Ho-Yeon;Moon, Eun-A;Nguyen, Minh-Khai
    • 전기전자학회논문지
    • /
    • 제23권1호
    • /
    • pp.273-279
    • /
    • 2019
  • A high boost dc-dc converter based on the switched-inductor cell (SL-cell) is suggested in this paper. The suggested converter can provide a high voltage gain that is more than 6. Moreover, the voltage gain can be easily increased by extending a SL cell or a modular voltage boost stage. This paper shows the key waveforms, the operating principles at the continuous conduction mode (CCM), and a comparison between the suggested converter and the other non-isolated converters. In addition, the extension of the suggested converter is presented. The simulation results were shown to reconfirm the theoretical analysis.

Switched Capacitor Based High Gain DC-DC Converter Topology for Multiple Voltage Conversion Ratios with Reduced Output Impedance

  • Priyadarshi, Anurag;Kar, Pratik Kumar;Karanki, Srinivas Bhaskar
    • Journal of Power Electronics
    • /
    • 제19권3호
    • /
    • pp.676-690
    • /
    • 2019
  • This paper presents a switched capacitor (SC) based bidirectional dc-dc converter topology for high voltage gain applications. The proposed converter is able to operate with multiple integral voltage conversion ratios based on user input. The architecture of a user-friendly, inductor-less multi-voltage-gain bidirectional dc-dc converter is proposed in this study. The inductor-less or magnetic-less design of the proposed converter makes it effective in higher temperature applications. Furthermore, the proposed converter has a reduced component count and lower voltage stress across its switches and capacitors when compared to existing SC converters. An output impedance analysis of the proposed converter is presented and compared with popular existing SC converters. The proposed converter is simulated in the OrCAD PSpice environment and the obtained results are presented. A 200 W hardware prototype of the proposed SC converter has been developed. Experimental results are presented to validate the efficacy of the proposed converter.

Analysis and Implementation of a New Single Switch, High Voltage Gain DC-DC Converter with a Wide CCM Operation Range and Reduced Components Voltage Stress

  • Honarjoo, Babak;Madani, Seyed M.;Niroomand, Mehdi;Adib, Ehsan
    • Journal of Power Electronics
    • /
    • 제18권1호
    • /
    • pp.11-22
    • /
    • 2018
  • This paper presents a single switch, high step-up, non-isolated dc-dc converter suitable for renewable energy applications. The proposed converter is composed of a coupled inductor, a passive clamp circuit, a switched capacitor and voltage lift circuits. The passive clamp recovers the leakage inductance energy of the coupled inductor and limits the voltage spike on the switch. The configuration of the passive clamp and switched capacitor circuit increases the voltage gain. A wide continuous conduction mode (CCM) operation range, a low turn ratio for the coupled inductor, low voltage stress on the switch, switch turn on under almost zero current switching (ZCS), low voltage stress on the diodes, leakage inductance energy recovery, high efficiency and a high voltage gain without a large duty cycle are the benefits of this converter. The steady state operation of the converter in the continuous conduction mode (CCM) and discontinuous conduction mode (DCM) is discussed and analyzed. A 200W prototype converter with a 28V input and a 380V output voltage is implemented and tested to verify the theoretical analysis.

Single-Ended High-Efficiency Step-up Converter Using the Isolated Switched-Capacitor Cell

  • Kim, Do-Hyun;Jang, Jong-Ho;Park, Joung-Hu;Kim, Jung-Won
    • Journal of Power Electronics
    • /
    • 제13권5호
    • /
    • pp.766-778
    • /
    • 2013
  • The depletion of natural resources and renewable energy sources, such as photovoltaic (PV) energy, has been highlighted for global energy solution. The PV power control unit in the PV power-generation technology requires a high step-up DC-DC converter. The conventional step-up DC-DC converter has low efficiency and limited step-up ratio. To overcome these problems, a novel high step-up DC-DC converter using an isolated switched capacitor cell is proposed. The step-up converter uses the proposed transformer and employs the switched-capacitor cell to enable integration with the boost inductor. The output of the boost converter and isolated switched-capacitor cell are connected in series to obtain high step-up with low turn-on ratio. A hardware prototype with 30 V to 40 V input voltage and 340 V output voltage is implemented to verify the performance of the proposed converter. As an extended version, another novel high step-up isolated switched-capacitor single-ended DC-DC converter integrated with a tapped-inductor (TI) boost converter is proposed. The TI boost converter and isolated-switched-capacitor outputs are connected in series to achieve high step-up. All magnetic components are integrated in a single magnetic core to lower costs. A prototype hardware with 20 V to 40 V input voltage, 340 V output voltage, and 100 W output power is implemented to verify the performance of the proposed converter.

High Efficiency High-Step-up Single-ended DC-DC Converter with Small Output Voltage Ripple

  • Kim, Do-Hyun;Kim, Hyun-Woo;Park, Joung-Hu;Jeon, Hee-Jong
    • Journal of Power Electronics
    • /
    • 제15권6호
    • /
    • pp.1468-1479
    • /
    • 2015
  • Renewable energy resources such as wind and photovoltaic power generation systems demand a high step-up DC-DC converters to convert the low voltage to commercial grid voltage. However, the high step-up converter using a transformer has limitations of high voltage stresses of switches and diodes when the transformer winding ratio increases. Accordingly, conventional studies have been applied to series-connect multioutput converters such as forward-flyback and switched-capacitor flyback to reduce the transformer winding ratio. This paper proposes new single-ended converter topologies of an isolation type and a non-isolation type to improve power efficiency, cost-effectiveness, and output ripple. The first proposal is an isolation-type charge-pump switched-capacitor flyback converter that includes an extreme-ratio isolation switched-capacitor cell with a chargepump circuit. It reduces the transformer winding number and the output ripple, and further improves power efficiency without any cost increase. The next proposal is a non-isolation charge-pump switched-capacitor-flyback tapped-inductor boost converter, which adds a charge-pump-connected flyback circuit to the conventional switched-capacitor boost converter to improve the power efficiency and to reduce the efficiency degradation from the input variation. In this paper, the operation principle of the proposed scheme is presented with the experimental results of the 100 W DC-DC converter for verification.

ST Quasi Z-소스 인버터의 스트레스 저감과 출력전압 특성 (Characteristics of the Stress Reduction and Output Voltage of ST(Switched Trans) Quasi Z-Source Inverter)

  • 김세진;정영국;임영철
    • 전력전자학회논문지
    • /
    • 제18권1호
    • /
    • pp.1-9
    • /
    • 2013
  • This paper proposes a ST(Switched Trans) quasi Z-source inverter using a Switched Trans Cell combing the characteristics of a Switched Inductor Cell and Trans. A DC link inductor of the conventional quasi Z-source inverter is alternated with Switched Trans Cell of the proposed ST quasi Z-source inverter. Trans Cell of the proposed method consists of one Trans and two diodes, and the proposed method has higher and more various boost function than the conventional quasi Z-source inverter by simply changing the turns ratio of primary and secondary of the Trans. The validity of the proposed ST Z-source inverter was confirmed by PSIM simulation and a DSP based experiment under the input voltage 48V and output phase voltage 30V. As a result, when compared with the traditional quasi Z-source inverter, the proposed method has the advantage of the low voltage stress under the same output voltage condition of the voltage.

스위칭 인덕터를 이용한 다중 표준용 CMOS 주파수 변환기 (A multistandard CMOS mixer using switched inductor)

  • 유상선;유형준
    • 대한전자공학회논문지TC
    • /
    • 제44권3호
    • /
    • pp.78-84
    • /
    • 2007
  • WCDMA, WiBro, 그리고 802.11a/b/g 등의 여러 표준에 사용가능한 직접 변환 주파수 변환기를 0.18 um CMOS 공정을 이용하여 설계 하였다. 여러 표준을 수용하기 위한 방법으로 스위칭이 가능한 인덕터를 매칭의 방법으로 사용하여 칩의 크기를 줄일 수 있었다. 매칭 네트워크 안에서 스위치 트랜지스터를 켜고 끔에 따라 주파수 변환기의 동작주파수가 결정된다. 이 때, 스위치의 기생성분들이 주파수 변환기의 성능과 동작 주파수 선택에 큰 영향을 미치기 때문에 기생성분의 영향을 최소화하는 스위치 너비로 매칭회로를 구성했다. 제안된 주파수 변환기는 $2.1\sim2.5GHz$ 대역과 $5.1\sim5.9GHz$ 대역 모두에서 -13 dB 이내의 입력 반사 손실을 얻었으며 목표 표준에서 요구하는 성능을 모두 만족시키도록 설계되었다.

A Novel Switched Capacitor High Step-up dc/dc Converter Using a Coupled Inductor with its Generalized Structure

  • Hamkari, Sajjad;Moradzadeh, Majid;Zamiri, Elyas;Nasir, Mehdi;Hosseini, Seyed Hossein
    • Journal of Power Electronics
    • /
    • 제17권3호
    • /
    • pp.579-589
    • /
    • 2017
  • In this study a new high step-up dc-dc converter is presented. The operation of the proposed converter is based on the capacitor switching and coupled inductor with a single active power switch in its structure. A passive voltage clamp circuit with two capacitors and two diodes is used in the proposed converter for elevating the converter's voltage gain with the recovered energy of the leakage inductor, and for lowering the voltage stress on the power switch. A switch with a low $R_{DS}$ (on) can be adopted to reduce conduction losses. In the generalized mode of the proposed converter, to reach a desired voltage gain, capacitor stages with parallel charge and series discharge techniques are extended from both sides of secondary side of the coupled inductor. The proposed converter has the ability to alleviate the reverse recovery problem of diodes with circuit parameters. The operating principle and steady-states analyses are discussed in detail. A 40W prototype of the proposed converter is implemented in the laboratory to verify its operation.

스위치드 본드와이어 인덕터를 이용한 다중대역 CMOS 전압제어발진기 설계 (Design of a Multiband CMOS VCO using Switched Bondwire Inductor)

  • 류성한
    • 한국인터넷방송통신학회논문지
    • /
    • 제16권6호
    • /
    • pp.231-237
    • /
    • 2016
  • 본 논문에서는 스위치드 본드와이어 인덕터 뱅크를 사용하여, 넓은 주파수 튜닝범위를 갖는 다중대역 저잡음 CMOS 전압제어발진기가 제안되었다. 본드와이어 인덕터와 CMOS 스위치의 결합으로 주파수 튜닝범위는 증가하고, 위상잡음은 개선되었다. 제안된 다중대역 CMOS 전압제어발진기는 2.3GHz부터 6.3GHz까지의 주파수에 대해 동작하며, 위상잡음은 1MHz 오프셋 주파수에 대해, 각각 -136dBc/Hz와 -122dBc/Hz를 나타내었다. 스위치드 본드와이어 인덕터 뱅크는 각 주파수 대역에서 높은 Quality factor(Q)를 나타내어, 위상잡음과 전력소모량 사이의 trade-off를 더욱 원활하게 해 준다. 제안된 전압제어발진기는 TSMC 0.18um CMOS공정을 사용하여 설계되었고, 7.2mW의 전력을 사용하며, 6GHz 발진주파수에 대해 1MHz 오프셋 주파수에서 -189.3dBC/Hz의 성능지수(FOM)를 나타내었다.