• 제목/요약/키워드: Swept volume

검색결과 29건 처리시간 0.017초

평행 이동에 의한 스웹트 볼륨의 계산 방법 (Calculation of Translational Swept Volumes)

  • 백낙훈;신성용
    • 한국CDE학회논문집
    • /
    • 제2권1호
    • /
    • pp.28-34
    • /
    • 1997
  • A swept volume is a useful tool for solving various types of interference problems. Previous works have concentrated on sweeping an object along an arbitrary path, that results in complex algorithms. This paper concerns the volume swept by translating an object along a linear path. After analyzing the structure of the swept volume, we present an incremental algorithm for constructing a swept volume. Our algorithm takes O(n/sup 2/ *.alpha.(n)+T/sub c/) time where n is the number of vertices in the original object and T/sub c/ is time for handling face cycles.

  • PDF

스크류 운동을 하는 다면체의 스웹 볼륨 생성 (Swept Volumes Generated by Polyhedral Objects Through Screw Motions)

  • 김재정;정채봉;서경천;강민우
    • 한국CDE학회논문집
    • /
    • 제7권4호
    • /
    • pp.211-218
    • /
    • 2002
  • Swept volumes have been used in a wide variety of applications, and the literature contains much discussion of methods for computing the swept volumes in many situations. However, the commercially available CAD systems do not support the operations of generating the swept volumes enough to satisfy a variety of users' needs. In this paper, we present a new, simple and efficient algorithm for computing the swept volume of moving a polyhedron in 3-D region. The screw motion is used to describe the sweep motion of a polyhedron, because of its simplicity and computational advantages. The boundary of a swept volume is the result of combining the envelope surfaces and the partial boundaries at the initial and final position of a polyhedron. Some portions of these boundaries are inside the swept volume. We develop the algorithm to remove these interior portions. Then, to implement our algorithm, it is performed to integrate our program with the commercial CAD software, CATIA.

다면체의 회전 스웹터 볼륨 계산 방법 (Computing Rotational Swept Volumes of Polyhedral Objects)

  • 백낙훈;신성용
    • 한국CDE학회논문집
    • /
    • 제4권2호
    • /
    • pp.162-171
    • /
    • 1999
  • Plane sweep plays an important role in computational geometry. This paper shows that an extension of topological plane sweep to three-dimensional space can calculate the volume swept by rotating a solid polyhedral object about a fixed axis. Analyzing the characteristics of rotational swept volumes, we present an incremental algorithm based on the three-dimensional topological sweep technique. Our solution shows the time bound of O(n²·2?+T?), where n is the number of vertices in the original object and T? is time for handling face cycles. Here, α(n) is the inverse of Ackermann's function.

  • PDF

스크류운동을 하는 자유형상 물체의 스웹볼륨 계산을 위한 추적법의 응용 (Applying a Tracing Method to Compute Swept Volumes Generated by Free-form Objects in Screw Motions)

  • 김형규;김재정
    • 한국CDE학회논문집
    • /
    • 제15권2호
    • /
    • pp.106-114
    • /
    • 2010
  • The swept volume, the region of a moving object, is applied in many fields such as valid paths for motions of tools, visualization in robot paths and interference tests for parts assembling or disjointing. The shape of a swept volume depends on an generators computed with normal vectors of an object and velocity vectors of a motion. Although free-from surfaces are widely used to represent geometric models in CAD, computing the generators for a free-form object is a formidable task. Previous approaches exploit the closed form expressions of generators but limited to planer or quadric faces. In this paper, we propose the algorithm to compute swept volumes generated by free-form objects in screw motions. For the algorithm a tracing method is applied to the computation of generators. It considers curvatures of surfaces of an object to increase the computational accuracy. We implemented our algorithm in the CATIA V.5 environment to test the validity of our algorithm and to generate examples.

자유 곡면체의 엔벨롭 생성 (Envelope Generation for Freeform Objects)

  • 송수창;김재정
    • 한국CDE학회논문집
    • /
    • 제6권2호
    • /
    • pp.89-100
    • /
    • 2001
  • Swept volume is the sweeping region of moving objects. It is used in various applications such as interference detection in assembly design, visualization of manipulator motions in robotics, simulation of the volume removal by a cutter in NC machining. The shape of swept volume is defined by the envelope, which is determined by the boundary of moving objects and its direction of motion. In order to implement the generation of swept volume, researchers have taken much effort to develop the techniques how to generate the envelope. However, their results are confined to envelope generated only in simple shape objects, such as polyhedra or quadric surfaces. This study provided the envelope generation algorithm of NURBS objects. Characteristic points were obtained by applying the geometric conditions of envelope to NURBS equations, and then characteristic curves were created by means of interpolating those points. Silhouette edges were determined in the following procedures. First, two adjacent surfaces which have the same edge were found from B-Rep data. Then, by taking the scalar product of velocity vector of a point on that edge with each normal vector on two surfaces, silhouette edges were discriminated. Finally, envelope was generated along moving direction in the form of ruled surfaces by using both the partial information between initial and final position of objects affecting envelope along with characteristic curves and silhouette edge. Since this developed algorithm can be applied not only to NURBS objects but also to their Boolean objects, it can be used effectively in various applications.

  • PDF

로보트의 시변 장애물 회피를 위한 수학적 접근 방법 (A Mathematical Approach to Time-Varying Obstacle Avoidance of Robot manipulators)

  • 고낙용;이범희;고명삼
    • 대한전기학회논문지
    • /
    • 제41권7호
    • /
    • pp.809-822
    • /
    • 1992
  • A mathematical approach to solving the time-varying obstacle avoidance problem is pursued. The mathematical formulation of the problem is given in robot joint space(JS). View-time concept is used to deal with time-varying obstacles. The view-time is the period in which a time-varying obstacles. The view-time is the period in which a time-varying obstacle is viewed and approximated by an equivalent stationary obstacle. The equivalent stationary obstacle is the volume swept by the time-varying obstacle for the view-time. The swept volume is transformed into the JS obstacle that is the set of JS robot configurations causing the collision between the robot and the swept volume. In JS, the path avoiding the JS obstacle is planned, and a trajectory satisfying the constraints on robot motion planning is planned along the path. This method is applied to the collision-free motion planning of two SCARA robots, and the simulation results are given.

Vuilleumier 사이클로 작동되는 열구동 냉동기의 예비설계조건 (Preliminary Design Conditions for a Thermally Actuated Refrigerator Based on the Vuilleumier Cycle)

  • 유호선;강병하
    • 대한기계학회논문집
    • /
    • 제16권12호
    • /
    • pp.2358-2367
    • /
    • 1992
  • 본 연구에서는 그 기초단계로서 작동유체의 실제상태변화에 근접하면서 간편 한 근사적인 단열해석법을 적용하여 VM사이클의 구체적인 예비설계조건을 제시하고자 한다.

Applying Fishing-gear Simulation Software to Better Estimate Fished Space as Fishing Effort

  • Lee, Ji-Hoon;Lee, Chun-Woo;Choe, Moo-Youl;Lee, Gun-Ho
    • Fisheries and Aquatic Sciences
    • /
    • 제14권2호
    • /
    • pp.138-147
    • /
    • 2011
  • Modeling fishing-gear systems is essential to better understand the factors affecting their movement and for devising strategies to control movement. In this study, we present a generalized mathematical modeling methodology to analyze fishing gear and its various components. Fishing gear can be divided into a finite number of elements that are connected with flexible lines. We use an algorithm to develop a numerical method that calculates precisely the shape and movement of the gear. Fishinggear mathematical models have been used to develop software tools that can design and simulate dynamic movement of novel fishing-gear systems. The tool allowed us to predict the shape and motion of the gear based on changes in operation and gear design parameters. Furthermore, the tool accurately calculated the swept volume of towed gear and the surrounding volume of purse-seine gear. We analyzed the fished volume for trawl and purse-seine gear and proposed a new definition of fishing effort, incorporating the concept of fished space. This method may be useful for quantitative fishery research, which requires a good understanding of the selectivity and efficiency of fishing gear used in surveys.

소해면적법에 의한 중하(Metapenaeus joyneri) 자원량 추정 시 대지속력과 대수속력 사용에 따른 자원량 차이 (Difference in biomasses depending on apllication of speed over the ground and speed through the water during biomass estimation of Metapenaeus joyneri via swept area methods)

  • 주영환;김민선;조현수
    • 수산해양기술연구
    • /
    • 제60권1호
    • /
    • pp.27-36
    • /
    • 2024
  • The towing distance, which is speed over the ground, and the water flow quantity, which is speed through the water, were used when estimating the amount of Metapenaeus joyneri resources that rose to the surface at night using the swept area method in order to compare and analyze the difference. It was conducted using a shrimp dredge, trial fishing gear for catching Metapenaeus joyneri. Catch during the entire survey period was 188.9 kg. Monthly catch ranged from 3.1 to 109.2 kg, highest in June and lowest in September. The swept volume calculated using the speed over the ground was about 13% higher than using the speed through the water. Metapenaeus joyneri resources estimated using the towing distance ranged from 320.1 to 14,649.8 kg. Resources estimated using the water flow quantity ranged from 278.5 to 12,886.3 kg. Therefore, the amount of Metapenaeus joyneri resources estimated using the speed over the ground was about 14% higher than the method using the speed through the water, indicating that the amount of resources was overestimated.

Optimization and Mathematical Modeling of the Transtubular Bioreactor for the Production of Monoclonal Antibodies from a Hybridoma Cell Line

  • Halberstadt, Craig R.;Palsson, Bernhanrd O.;Midgley, A.Rees;Curl, Rane L.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제7권3호
    • /
    • pp.163-170
    • /
    • 2002
  • This report describes the use of a transtubular bioreactor to study the relative effects of diffusion versus perfusion of medium on antibody production by a hybridoma cell line. The study was performed with a high-density cell culture maintained in a serum-free, low-protein medium for 77 days. It was determined that the reactor possessed a macro-mixing pattern residence time distribution similar to a continuous stirred tank reactor (CSTR), However, due to the arrangement of the medium lines in the reactor, the flow patterns for nutrient distribution consist of largely independent medium path lengths ranging from short to long. When operated with cyclic, reversing, transtubular medium flow, some regions of the reactor (with short residence times) are more accessible to medium than others (with long residence times). From this standpoint, the reactor can be divided into three regions: a captive volume, which consists of medium primarily delivered via diffusion; a lapped volume, which provides nutrients through unilateral convection; and a swept volume, which operates through bilateral convection. The relative sizes of these three volumes were modified experimentally by changing the period over which the direction of medium flow was reversed from 15 min (larger captive volume) to 9 h (larger swept volume). The results suggest that antibody concentration increases as the size of the diffusion-limited (captive) volume is increased to a maximum at around 30 min with a sharp decrease thereafter. As reflected by changes in measured consumption of glucose and production of lactate, no significant difference in cellular metabolism occurred as the reactor was moved between these different states. These results indicate that the mode of operation of the transtubular bioreactor may influence antibody productivity under serum-free, low-protein conditions with minimal effects on cellular metabolism.