• Title/Summary/Keyword: Surface nucleation

Search Result 334, Processing Time 0.025 seconds

Surface Modification of Bentonite for the Improvement of Radionuclide Sorption

  • Hong, Seokju;Kim, Jueun;Um, Wooyong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.1
    • /
    • pp.1-12
    • /
    • 2022
  • Bentonite is the most probable candidate to be used as a buffer in a deep geological repository with high swelling properties, hydraulic conductivity, thermal conductivity, and radionuclide sorption ability. Among them, the radionuclide sorption ability prevents or delays the transport of radionuclides into the nearby environment when an accident occurs and the radionuclide leaks from the canister, so it needs to be strengthened in terms of long-term disposal safety. Here, we proposed a surface modification method in which some inorganic additives were added to form NaP zeolite on the surface of the bentonite yielded at Yeonil, South Korea. We confirmed that the NaP zeolite was well-formed on the bentonite surface, which also increased the sorption efficiency of Cs and Sr from groundwater conditions. Both NaP and NaX zeolite can be produced and we have demonstrated that the generation mechanism of NaX and NaP is due to the number of homogeneous/heterogeneous nucleation sites and the number of nutrients supplied from an aluminosilicate gel during the surface modification process. This study showed the potential of surface modification on bentonite to enhance the safety of deep geological radioactive waste repository by improving the radionuclide sorption ability of bentonite.

Deposition of MgO Thin Films by Electrostatic Spray Pyrolysis(ESP) method and Application to AC-PDP (정전기 분무 열분해법에 의한 MgO 박막 증착과 AC-PDP로의 용용에 대한 연구)

  • Kim, Soo-Gil;Eun, Jae-Hwan;Kim, Hyeong-Joon;Kim, Young-Kee;Park, Chung-Hoo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.133-138
    • /
    • 2000
  • MgO thin films were deposited using $Mg(tmhd)_2$ as a precursor dissolved in a solvent by electrostatic spray pyrolysis. When a pure tetra hydro furan was used as a solvent, a large number of particles appeared on the MgO thin film surface due to homogeneous nucleation. However, by adding 1-butyl alcohol or 1-octyl alcohol to THF, homogeneous nucleation was restricted and the number density of the large particles was also drastically reduced. X-ray diffraction analysis showed that the MgO films had a (100) preferred orientation regardless of the type of solvents used. Characterization using Fourier Transformed-Infrared and spectroscopic photometer revealed that the crystallized MgO thin films on the glass substrate had a high optical transmittance (> 85 %) in the visible range. Discharge characteristics of MgO thin films deposited by ESP method on an alternating-current plasma display panel were compared with a MgO thin film prepared by reactive radio-frequency planar magnetron sputtering.

  • PDF

Injection Molded Microcellular Plastic Gear (I) - Process Design for the Microcellular Plastic Gear - (초미세발포 플라스틱 기어에 관한 연구 (I) - 초미세발포 플라스틱 기어의 공정설계 -)

  • Ha Young Wook;Chong Tae Hyong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.5 s.236
    • /
    • pp.647-654
    • /
    • 2005
  • This research Proposes a Process design of injection molded microcellular plastic gears for enhancing the fatigue strength/durability and accuracy of the gears applying thermodynamic instability to microcellular foaming process. To develop the injection molded plastic gears by way of microceliular process, it is absolutely necessary the following two process design. The first is microcellular forming process for enhancing the strength/durability of plastic gears. To be microcellular process succeeded, based on the microcellular principle, mechanical apparatus is designed where nucleation and cell growth are to be generated renewably. The second is the counter pressure process which is mainly fur improving the tooth surface roughness and the accuracy of microcellular gears. For the former process, screw, nozzle and gas equipment are newly designed, and for the latter, counter pressure by nitrogen gas is intentionally brought about into mold cavity when injecting plastic gears. Based on the proposed process design, using gear mold, experiments of injection molding show that, in internal space of plastic gears, microcellular nuclear cells less than 5 lim in diameter have been generated homogeneously via electron microscope photos.

The Effect of Oxygen and Carbon Dioxide Concentration on Soot Formation in Nonpremixed Flames Using Time Resolved LII Technique

  • Oh, Kwang-Chul;Shin, Hyun-Dong
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.2068-2076
    • /
    • 2005
  • The influence of oxygen concentration and CO$_{2}$ as diluent in oxidizer side on soot characteristics was studied by Laser Induced Incandescence, Time Resolved LII and Transmission Electron Microscopy photography in non-premixed co flowing flames. Through the comparison of TEM photographs and the decay rate of LII signal, suitable two delay times of TIRE-LII method and signal sensitivity ($\Delta$S$_{TIRE-LII/) were determined. The effects of O$_{2}$ and CO$_{2}$ as diluent in oxidizer side on soot formation are investigated with these calibrated techniques. The O$_{2}$+CO$_{2}$, N$_{2}$, and [Ar+CO$_{2}$] mixture in co-flow were used to isolate CO2 effects systematically. The number concentration of primary particle and soot volume fraction abruptly decrease by the addition of CO$_{2}$ to the co-flow. This suppression is resulted from the short residence time in inception region because of the late nucleation and the decrease of surface growth distance by the low flame temperature due to the higher thermal capacity and the chemical change of CO$_{2}$ including thermal dissociation. As the oxygen concentration increases, the number concentration of soot particles at the inception region increases and thus this increase of nucleation enhances the growth of soot particle.

TEM study on a-axis outgrowth formation in c-axis oriented YBa$_2$Cu$_3$O$_{7-{\delta}}$ thin films

  • Hahn, T.S.;Hong, K.S.;Kim, C.H.
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.51-55
    • /
    • 2000
  • Using modified melt-textured grown targets, YBa$_2$Cu$_3$O$_{7-{\delta}}$ thin films were prepared by pulsed laser deposition technique at the laser energy density from 1 J/cm$_2$ to 4 J/cm$_2$. All the films showed c-axis preferred orientations, however, a-axis outgrowths on the film surface were considerably increased with an increase of the laser energy density. To examine the origin of the a-axis outgrowth formation, the microstructures of films deposited at 2 J/cm$_2$ and 4 J/cm$_2$ were investigated using X-ray diffraction, transmission electron microscopy, and high-resolution electron microscopy. It was shown that a significant number of Y$_2$O$_3$ inclusions were formed during the growth of c-axis oriented films at 4 J/cm$_2$. These inclusions formed nucleation sites for the a-axis outgrowths. It is considered that, due to the unstable growth conditions with a high flux density of incident vapor species and the strain induced by the surrounding c-axis films, the Y$_2$O$_3$ inclusions would prefer the nucleation of α-axis grains.

  • PDF

Nickel Particle Coatings by Electroless Plating onto Carbon Nanotubes (탄소나노튜브 표면의 무전해 니켈입자 코팅)

  • Cho, Gue-Serb;Lim, Jung-Kyu;Jang, Hoon;Choe, Kyeong-Hwan
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.5
    • /
    • pp.462-468
    • /
    • 2010
  • Carbon Nanotubes (CNTs) have recently emerged as a material with outstanding properties. It has shown promising potential for applications in many engineering fields as electronic devices, thermal conductors, and light-weight composites. Researchers have investigated their use as reinforcements in themetal matrix composites of CNTs. In the present work, we decorated CNTs with Ni particles by electroless plating. The CNTs were wet-ball milled for various milling times with a nickel sulfate solution. The precipitated Ni particles were observed mainly by FESEM. In this study, the dispersion of the CNTs and Ni particles was improved with the addition of the surfactant. Also, as the CNTs were shortened and widened by an increased ball milling time, the size of the precipitated Ni particles increased. It was estimated that the CNTs were deformed and caused some defects on their surface during the ball milling process. Those defects were assumed to be heterogeneous nucleation sites for the Ni particles.

A Study on the Effect of Pre-treatment on the Formation of Nitriding Layer by Post Plasma (포스트 플라즈마를 이용한 질화의 질화층 형성에 미치는 전처리의 영향에 대한 연구)

  • Moon, Kyoung Il;Byun, Sang Mo;Cho, Yong Ki;Kim, Sang Gweon;Kim, Sung Wan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.1
    • /
    • pp.24-28
    • /
    • 2005
  • New post plasma nitriding can achieve a high uniformity that have been difficult in DC nitriding and have a high productivity comparable to gas nitriding. However, it has not a enough high nitriding potential for a rapid nitriding, because surface activation or ion etching in the general plasma nitriding cannot be expected. Thus, in this study, the effects of pre-treatments with oxidation and reduction gas have been investigated to improve the nitriding kinetics of post plasma nitriding. An effective pre-treatment consisting of oxidation and reduction resulted in the increase of surface energy of STD 11. This induced the surface hardness and the effective nitriding depth of STD 11. It is thought that the increase of the surface energy and the surface area with pre-treatment promote the nucleation of nitriding layer.

Thermal Shock Behavior of TiN Coating Surface by a Pulse Laser Ablation Method

  • Noh, Taimin;Choi, Youngkue;Jeon, Min-Seok;Shin, Hyun-Gyoo;Lee, Heesoo
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.7
    • /
    • pp.539-544
    • /
    • 2012
  • Thermal shock behavior of TiN-coated SUS 304 substrate was investigated using a laser ablation method. By short surface ablation with a pulse Nd-YAG laser, considerable surface crack and spalling were observed, whereas there were few oxidation phenomena, such as grain growth of TiN crystallites, nucleation and growth of $TiO_2$ crystallites, which were observed from the coatings quenched from $700^{\circ}C$ in a chamber. The oxygen concentration of the ablated coating surface with the pulse laser also had a lower value than that of the quenched coating surface by Auger electron spectroscopy and electron probe micro analysis. These results were attributed to the fact that the properties of the pulse laser method have a very short heating time and so the diffusion time for oxidation was insufficient. Consequently, it was verified that the laser thermal shock test provides a way to evaluate the influence of the thermal shock load reduced oxidation effect.

Electrochemical and surface investigations of copper corrosion in dilute oxychloride solution

  • Gha-Young Kim ;Junhyuk Jang;Jeong-Hyun Woo;Seok Yoon;Jin-Seop Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2742-2746
    • /
    • 2023
  • The corrosion behavior of copper immersed in dilute oxychloride solution (100 mM) was studied through surface investigation and in-situ monitoring of open-circuit potential. The copper corrosion was initiated with copper dissolution into a form of CuCl-2, resulting in mass decrease within the first 40 h of immersion. This was followed by a hydrolysis reaction initiated by the CuCl-2 at the copper surface, after which oxide products were formed and deposited on the surface, resulting in a mass increase. The formation of nucleation sites for copper oxide and its lateral extension during the corrosion process were examined using focused ion beam (FIB)-scanning electron microscopy (SEM). The presence of metastable compounds such as atacamite (CuCl2·3Cu(OH)2) on the corroded copper surface was revealed by X-ray photoelectron spectra (XPS) and transmission electron microscopy (TEM)-energy dispersive spectrometry (EDS) analysis.

Phase Diagrams and Stable Structures of Stranski-Krastanov Structure Mode for III-V Ternary Quantum Dots

  • Nakaima, Kazuno;Ujihara, Toru;Miyashita, Satoru;Sazaki, Gen
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1999.06a
    • /
    • pp.81-114
    • /
    • 1999
  • The strain, surface and inerfacial energies of III-V ternary systems were calculated for three kinds of structure modes: the Frank-van der Merwe (FM) mode, the Stranski-Krastanov (SK) mode an the Volmer-Wever (VW) mode. The free energy for each mode was estimated as functions of the thickness and composition or lattice misfit. Through comparison of the free energy of each mode, it was found that the thickness-composition phase diagrams of III-V ternary systems can be determined only by considering the balance of the free energy and three kinds of structure modes appear in the phase diagrams. The SK mode appears only when the lattice misfit is large and/or the lattice layer is thick. The most stable structure of the SK mode is a cluster with four lattice layers or minimum thickness on a wetting layer of increasing lattice layers. The VW mode appears when the lattice misfit is large and the lattice layer is thin and only in the InPSb/InP and GaPSb/GaP systems which have the largest lattice misfit of III-V ternary systems. The stable region of the SK mode in the GaPSb/GaP and InPSb/InP phase diagrams is largest of all because the composition dependence of the strain energy of these systems is stronger than that of the other systems. The critical number of lattice layers below which tow-dimensional (2D) layers precede the three-dimensional (3D) nucleation in the SK mode at x=1.0 depnds on the lattice misfit.

  • PDF