• Title/Summary/Keyword: Surface loading

Search Result 1,759, Processing Time 0.027 seconds

Study on Effect of Anchor Bolt by Thermal Expansion of Sulfur Storage Tank under High Temperature (고온을 받는 유황저장탱크의 열팽창에 의한 앵커볼트 영향에 관한 연구)

  • Jung, Wook-Hwan;Kim, Jeong-Soo;Kim, Tae-Min;Kim, Moon-Kyum
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.5
    • /
    • pp.483-490
    • /
    • 2016
  • In plant industry, sulfur storage tank is made of steel and annular plate is connected with concrete foundation of ring wall type by anchor bolt. Due to keep sulfur at high temperature in tank by coil, sulfur storage tank is expanded larger than another tank stores fluid at room temperature. Generally, structural design of tank foundation is performed analysis with loading of temperature gradient between inner and outer surface, this method can't consider the phenomenon that load is intensively transferred to concrete foundation at anchor bolt. This means that temperature load is underestimated and causes crack of concrete near anchor bolt. In this study, evaluation formula considering temperature load transfer mechanism through anchor bolt is proposed and load acting on concrete foundation is rationally decided. For this purpose, it is analyzed variation of thermal load per various anchor bolt number using finite element model including tank annular plate and anchor bolt. Solution is proposed as specified term combining result of analysis and theoretical solution for evaluating load transferred by anchor bolt. For confirmation of validation of proposed formula, it is applied in design of sulfur storage tank at plant site, it shows that the formula can be practically applied.

New Synthesis of the Ternary Type Bi2WO6-GO-TiO2 Nanocomposites by the Hydrothermal Method for the Improvement of the Photo-catalytic Effect (개선된 광촉매 효과를 위한 수열법에 의한 삼원계 Bi2WO6-GO-TiO2 나노복합체의 쉬운 합성 방법)

  • Nguyen, Dinh Cung Tien;Cho, Kwang Youn;Oh, Won-Chun
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.705-713
    • /
    • 2017
  • A novel material, $Bi_2WO_6-GO-TiO_2$ composite, was successfully synthesized using a facile hydrothermal method. During the hydrothermal reaction, the loading of $Bi_2WO_6$ and $TiO_2$ nanoparticles onto graphene sheets was achieved. The obtained $Bi_2WO_{6-GO-TiO2}$ composite photo-catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM), Raman spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy (UV-vis-DRS), and X-ray photoelectron spectroscopy (XPS). The $Bi_2WO_6$ nanoparticle showed an irregular dark-square block nanoplate shape, while $TiO_2$ nanoparticles covered the surface of the graphene sheets with a quantum dot size. The degradation of rhodamine B (RhB), methylene blue trihydrate (MB), and reactive black B (RBB) dyes in an aqueous solution with different initial amount of catalysts was observed by UV spectrophotometry after measuring the decrease in the concentration. As a result, the $Bi_2WO_6-GO-TiO_2$ composite showed good decolorization activity with MB solution under visible light. The $Bi_2WO_6-GO-TiO_2$ composite is expected to become a new potential material for decolorization activity. Photocatalytic reactions with different photocatalysts were explained by the Langmuir-Hinshelwood model and a band theory.

Gait Phases Detection from EMG and FSR Signals in Walkingamong Children (근전도와 저항 센서를 이용한 보행 단계 감지)

  • Jang, Eun-Hye;Chi, Su-Young;Lee, Jae-Yeon;Cho, Young-Jo;Chun, Byung-Tae
    • Science of Emotion and Sensibility
    • /
    • v.13 no.1
    • /
    • pp.207-214
    • /
    • 2010
  • The aim of this study was to investigate upper and lower limb muscle activity using EMG(electromyogram) sensors while walking and identify normal gait pattern using FSR(force sensing resistor) sensor. Fifteen college students participated in this study and their EMG and FSR signal were measured during stopping and walking trials. EMG signals from upper(pectoralis major and trapezius) and lower limbs(rectus femoris, biceps femoris, vastus medialis, vastus lateralis, semimembranosus, semitendinosus, soleus, peroneus longus, gastrocnemius medialis, and gastrocnemius lateralis) were obtained using the surface electrodes. FSR measured pressures on 8 areas of the sole of the foot during walking. EMG results showed that all muscle activities except for vastus lateralis and semimembranosus during walking had higher amplitudes than stopping. Additionally, muscle activities associated with stance and swing phase during walking were identified. Results on FSR showed that stance and swing phases were detected by FSR signals during a gait cycle. Eight gait phases-initial contact, loading response, mid stance, terminal stance, pre swing, initial swing, mid swing, and terminal swing- were classified.

  • PDF

Dynamic Frictional Behavior of Artificial Rough Rock Joints under Dynamic Loading (진동하중 하에서 거친 암석 절리면의 동력 마찰거동)

  • Jeon Seok-Won;Park Byung-Ki
    • Tunnel and Underground Space
    • /
    • v.16 no.2 s.61
    • /
    • pp.166-178
    • /
    • 2006
  • Recently, the frequency of occurring dynamic events such as earthquakes, explosives blasting and other types of vibration has been increasing. Besides, the chances of exposure for rock discontinuities to free faces get higher as the scale of rock mass structures become larger. For that reason, the frictional behavior of rock joints under dynamic conditions needs to be investigated. In this study, artificially fractured rock joint specimens were prepared in order to examine the dynamic frictional behavior of rough rock joint. Roughness of each specimen was characterized by measuring surface topography using a laser profilometer and a series of shaking table tests was carried out. For mated joints, the static friction angle back-calculated ken the yield acceleration was $2.7^{\circ}$ lower than the tilt angle on average. The averaged dynamic friction angle for unmated joints was $1.8^{\circ}$ lower than the tilt angle. Displacement patterns of sliding block were classified into 4 types and proved to be related to the first order asperity of rock joint. The tilt angle and the static friction angle for mated joints seem to be correlated to micro average inclination angle which represents the second order asperity. The tilt angle and the dynamic friction angle for unmated Joints, however, have no correlation with roughness parameters. Friction angles obtained by shaking table test were lower than those by direct shear test.

Measurement of Tensile Properties for Thin Aluminium Film by Using White Light Interferometer (백색광간섭계를 이용한 알루미늄 박막의 인장 물성 측정)

  • Kim, Sang-Kyo;Oh, Chung-Seog;Lee, Hak-Joo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.5
    • /
    • pp.471-478
    • /
    • 2010
  • Thin films play an important role in many technological applications including microelectronic devices, magnetic storage media, MEMS and surface coatings. It is well known that a thin film's material properties can be very different from the corresponding bulk properties and thus there has been a strong need for the development of a reliable test method to measure the mechanical properties of a thin film. We have developed an alternative and convenient test method to overcome the limitations of previous membrane deflection experiment and uniaxial tensile test by adopting a white light interferometer having sub-nanometer out-of-plane displacement resolution. The freestanding aluminium specimens are tested to verity the effectiveness of the test method developed and get the tensile properties. The specimens are 0.5 rum wide, $1{\mu}m$ thick and fabricated through MEMS processes including sputtering. 1 to 5 specimens are fabricated on Si dies. The membrane deflection experiments are carried out by using a homemade tester consisted of a motor-driven loading tip, a load cell, and 6 DOF alignment stages. The test system is compact enough to set it up beneath a commercial white light interferometric microscope. The white light fringes are utilized to align a specimen with the tester. The Young's modulus and yield point stress of the aluminium film are 62 GPa and 247 MPa, respectively.

Mechanical reliability of Sn-37Pb BGA solder joints with high-speed shear test (고속전단 시험을 이용한 Sn-37Pb BGA solder joints의 기계적 신뢰성 특성 평가)

  • Jang, Jin-Kyu;Ha, Sang-Su;Ha, Sang-Ok;Lee, Jong-Gun;Moon, Jung-Tak;Park, Jai-Hyun;Seo, Won-Chan;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.4
    • /
    • pp.65-70
    • /
    • 2008
  • The mechanical shear strength of BGA(Ball Grid Array) solder joints under high impact loading was investigated. The Sn-37Pb solder balls with a diameter of $500{\mu}m$ were placed on the pads of FR-4 substrates with ENIG(Electroless Nickel Immersion Gold) surface treatment and reflowed. For the High Temperature Storage(HTS) test, the samples were aged a constant testing temperature of $120^{\circ}C$ for up to 250h. After the HTS test, high speed shear tests with various shear speed of 0.01, 0.1, 1, 3 m/s were conducted. $Ni_3Sn_4$ intermetallic compound(IMC) layer was observed at the solder/Ni-P interface and thickness of IMC was increased with aging process. The shear strength increased with increasing shear speed. The fracture surfaces of solder joints showed various fracture modes dependent on shear speed and aging time. Fracture mode was changed from ductile fracture to brittle fracture with increasing shear speed.

  • PDF

Analysis of Load Sharing Ratio of Piled Raft Foundation by Field Measurement (현장 계측을 통한 말뚝지지 전면기초의 하중분담률 분석)

  • Jeong, Sang-Seom;Lee, Jun-Hwan;Park, Jong-Jeon;Roh, Yang-Hoon;Hong, Moon-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.8
    • /
    • pp.41-52
    • /
    • 2017
  • In this study, field measurements were investigated to analyze the load sharing ratio and behavior of piled raft foundation. The field measurements were performed for about 300 days from the start of construction. The geometry of the raft is $3.1m{\times}3.1m$, and the pre-cast and pre-bored pile is 23 m in length and 0.508 m in diameter. Based on the field measurements, the load-settlement relationship of the piled raft foundation was obtained, and the load sharing ratio of the pile was converged to 70% at ultimate loading condition. The load sharing ratio of the pile increased as the settlement increased, and this is because the surface friction of the weathered soil, which is at the lower ground, was significantly increased. Based on the results of the field measurements, load transfer curves were obtained and applied to a numerical analysis by using load transfer method.

A Study on Characteristics of HI Decomposition Using Pt Catalysts on ZrO2-SiO2 Mixed Oxide (ZrO2-SiO2 복합산화물에 담지된 백금 촉매의 요오드화수소 분해 특성 연구)

  • Ko, Yunki;Park, Eunjung;Bae, Kikwang;Park, Chusik;Kang, Kyoungsoo;Cho, Wonchul;Jeong, Seonguk;Kim, Changhee;Kim, Young Ho
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.5
    • /
    • pp.359-366
    • /
    • 2013
  • This work is investigated for the catalytic decomposition of hydrogen iodide (HI). Platinum was used as active material by loading on $ZrO_2-SiO_2$ mixed oxide in HI decomposition reaction. To obtain high and stable conversion of hydrogen iodide in severe condition, it was required to improve catalytic activity. For this reason, a method increasing dispersion of platinum was proposed in this study. In order to get high dispersion of platinum, zirconia was incorporated in silica by sol-gel synthesis. Incorporating zirconia influence increasing platinum dispersion and BET surface area as well as decreasing deactivation of catalysts. It should be able to stably product hydrogen for a long time because of inhibitive deactivation. HI decomposition reaction was carried out under the condition of $450^{\circ}C$ and 1 atm in a fixed bed reactor. Catalysts analysis methods such as $N_2$ adsorption/desorption analysis, X-ray diffraction, X-ray fluorescence, ICP-AES and CO gas chemisorption were used to measurement of their physico-chemical properties.

Fracture strength of zirconia ceramic crowns according to tooth position (치아 부위에 따른 지르코니아 도재관의 파절강도)

  • Lee, In-Seob;Kim, Jeong-Mi;Dong, Jin-Keun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.2
    • /
    • pp.94-100
    • /
    • 2010
  • Purpose: The purpose of this study was to compare the fracture strength of the zirconia ceramic crowns according to tooth position. Material and methods: After 10 metal dies were made for each group, the zirconia ceramic crowns were fabricated using CAD/CAM system ($Lava^{TM}$ All-Ceramic System) and each crown was cemented on each metal die with resin cement (Rely $X^{TM}$ Unicem). The cemented zirconia ceramic crowns mounted on the testing jig were inclined with 30 degrees to the long axis of the tooth and the universal testing machine was used to measure the fracture strength. Results: 1. The fracture strength of the zirconia ceramic crown in the lower 1st molar (2963 N) had the highest and that in the lower central incisor (1035 N) had the lowest. 2. The fracture strength of zirconia ceramic crown was higher than that of the IPS Empress crowns in all tooth position. 3. The fracture mode of the crowns was similar. Most of fracture lines began at the loading area and extended through proximal surface perpendicular to the long axis of the crowns. 4. There were no significant differences on the fracture strength of the zirconia ceramic crowns according to tooth position except in premolar group. Conclusion: Within the limitations of this study, the results suggested that strength of zirconia ceramic crown is satisfactory for clinical use.

Mechanical strength of Zirconia Abutment in Implant Restoration (지르코니아 임플란트 지대주의 기계적 강도에 관한 연구)

  • Shin, Sung-ae;Kim, Chang-Seop;Cho, Wook;Jeong, Chang-Mo;Jeon, Young-Chan;Yun, Ji-Hoon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.4
    • /
    • pp.349-360
    • /
    • 2009
  • Purpose: As the esthetic demands of dental implant patients are increased, the demands of zirconia as implant abutment material are also increased. It has non-metalic color, good biocompatibility, high strength and high toughness. Even thought the advatage of zirconia abutment, there are a few studies about mechanical properties of zirconia abutment. This study evaluated the mecanical strength with compressive bending strength and endurance limit of implant-zirconia abutment assembly. Materials and Methods: Static and cyclic loading of implant-Zirconia abutment assembly were simulated under worst case condition according to ISO. Test groups were implants of external butt joint with straight regular diameter and angled regular diameter zirconia abutment, implant of external butt joint with narrow straight diameter zirconia abutment and implant of internal conical joint with straight narrow diameter zirconia abutment. All test group were evaluated the mecanical strength with compressive bending strength and endurance limit. After fatique testing, fracture surface were examined by SEM. Results: The compressive bending strengths exceed 927N. Regular diameter zirconia abutment were stronger than narrow diameter zirconia abutment(P<.05). The endurance limits ranged from 503N to 868N. Conclusion: Within the limitation of this study, zirconia implant abutment exceeded the estabilished values for maximum incisal biting forces reported in the literature.