DOI QR코드

DOI QR Code

Fracture strength of zirconia ceramic crowns according to tooth position

치아 부위에 따른 지르코니아 도재관의 파절강도

  • Lee, In-Seob (Department of Prosthodontics, College of Dentistry, Wonkwang University) ;
  • Kim, Jeong-Mi (Dental Hospital, College of Dentistry, Wonkwang University) ;
  • Dong, Jin-Keun (Department of Prosthodontics, College of Dentistry, Wonkwang University)
  • 이인섭 (원광대학교 치과대학 치과보철학교실) ;
  • 김정미 (원광대학교 치과대학 치과병원) ;
  • 동진근 (원광대학교 치과대학 치과보철학교실)
  • Received : 2010.01.20
  • Accepted : 2010.03.31
  • Published : 2010.04.30

Abstract

Purpose: The purpose of this study was to compare the fracture strength of the zirconia ceramic crowns according to tooth position. Material and methods: After 10 metal dies were made for each group, the zirconia ceramic crowns were fabricated using CAD/CAM system ($Lava^{TM}$ All-Ceramic System) and each crown was cemented on each metal die with resin cement (Rely $X^{TM}$ Unicem). The cemented zirconia ceramic crowns mounted on the testing jig were inclined with 30 degrees to the long axis of the tooth and the universal testing machine was used to measure the fracture strength. Results: 1. The fracture strength of the zirconia ceramic crown in the lower 1st molar (2963 N) had the highest and that in the lower central incisor (1035 N) had the lowest. 2. The fracture strength of zirconia ceramic crown was higher than that of the IPS Empress crowns in all tooth position. 3. The fracture mode of the crowns was similar. Most of fracture lines began at the loading area and extended through proximal surface perpendicular to the long axis of the crowns. 4. There were no significant differences on the fracture strength of the zirconia ceramic crowns according to tooth position except in premolar group. Conclusion: Within the limitations of this study, the results suggested that strength of zirconia ceramic crown is satisfactory for clinical use.

연구목적: 본 연구는 상악과 하악의 각 치아부위에 $Lava^{TM}$ All-Ceramic System을 이용하여 지르코니아 전부도재관을 제작하고 각각의 파절강도를 알아보고자 하였다. 연구방법:중절치와 견치는 절단연의 삭제량을 2.0 mm, 소구치와 대구치는 교합면의 삭제량을 1.5 mm, 그리고 축면 경사도는 $8^{\circ}$로하여모두8군의 실험군을 설정하였다. 금속 다이와 지르코니아 도재관을 제작한 후 레진시멘트 (Rely $X^{TM}$ Unicem)를 이용하여 합착하고 만능시험기상에서 치아 장축에 $30^{\circ}$경사지게 하여 중절치와 견치에 제작된 지르코니아 도재관은 절단연 중앙 부위에 하중을 가하였고, 소구치와 대구치에 제작된 지르코니아 도재관은 기능교두의 협설측 경사면 중앙부위에 하중이 가해지도록 한 후 파절강도를 측정하였다. 결과:1. 지르코니아 도재관의 평균 파절강도는 하악 제1대구치에서 2963 N으로 가장 높게 나타났으며, 하악 중절치에서 1035 N으로 가장 낮게 나타났다. 2. 지르코니아 도재관과 IPS Empress 도재관과의 평균 파절강도는 모든 치아에서 지르코니아 도재관이 더 크게 나타났다. 3. 지르코니아 도재관의 파절 양상은 하중이 가해진 중앙 부위에서 치아 장축으로 수직적인 파절상을 보였다. 4. 상악과 하악의 동일 부위에 제작된 지르코니아 도재관의 파절강도는 소구치에서 상악이 하악에 비하여 낮은 것으로 나타났으며 (P< .05), 다른 부위에서는 유의한 차이가 없었다 (P> .05). 결론: 본 실험의 결과로 지르코니아 도재관은 임상에서 활용하기에 만족할 만한 강도를 갖고 있음을 알 수 있었다.

Keywords

References

  1. Southan DE, Jorgensen KD. Faulty porcelain jacket crowns. Aust Dent J 1972;17:436-40. https://doi.org/10.1111/j.1834-7819.1972.tb04974.x
  2. Anusavice KJ. Degradability of dental ceramics. Adv Dent Res 1992;6:82-9.
  3. Blatz MB. Long-term clinical success of all-ceramic posterior restorations. Quintessence Int 2002;33:415-26.
  4. Oh SC, Dong JK, $L\"{u}thy$ H, $Sch\"{a}rer$ P. Strength and microstructure of IPS Empress 2 glass-ceramic after different treatments. Int J Prosthodont 2000;13:468-72.
  5. Lee HH. Dental Ceramics: Processing and clinical implications. J Korea Clin Dent 2000;2:106-15.
  6. Song BK, Lee HH, Dong JK. Fracture Strength of the IPS Empress Crown : The effect of occlusal depth and axial inclination on upper central incisor. J Korean Acad Stomato Func Occlu 2000;16:237-44.
  7. Shin DK, Kang HJ, Park YS, Park KS, Dong JK. Fracture Strength of the IPS Empress Crown : The effect of incisal reduction and axial inclination on upper canine. J Korean Acad Prosthodont 2005;43:30-40.
  8. Dong JK, Oh SC, Kim SD. Fracture Strength of the IPS Empress Crown . The effect of occlusal depth and axial inclination on upper first premolar crowns. J Korean Acad Prosthodont 1999;37:127- 33.
  9. Choi TR, Lee HH, Dong JK. Fracture Strength of the IPS Empress Crown : The effect of occlusal depth and axial inclination on upper first molar. J Korean Acad Prosthodont 2001;39:171-83.
  10. Nam YS, Dong JK. Fracture Strength of the IPS Empress Crown. The effect of incisal reduction and axial inclination on lower central incisor. J Korean Acad Stomato Func Occlu 2003;19:207-17.
  11. Jung YC, Shin DK, Park EJ, Kim MJ, Dong JK. Fracture Strength of the IPS Empress Crown. The effect of incisal reduction depth and axial inclination on lower canine. J Korean Acad Stomato Func Occlu 2004;20:20-9.
  12. Kim HJ, Lee HH, Nam YS, Dong JK. Fracture Strength of the IPS Empress Crown : The effect of occlusal depth and axial inclination on lower second premolar. J Korean Acad Prosthodont 2002;40:441-50.
  13. Kim SH, Lee JH, Kim YL, Dong JK. Fracture Strength of the IPS Empress Crown : The effect of occlusal depth and axial inclination on lower first molar. J Korean Acad Prosthodont 2003;41:48-59.
  14. Jeong HC. Fracture strength of zirconia monolithic crowns. J Korean Acad Prosthodont 2006;44:157-64.
  15. Shin ES, Lee YS, Park WH. Comparative study in fracture strength of zirconia cores fabricated with three different CAD/CAM systems. J Korean Acad Prosthodont 2008;46:22-30.
  16. Sundh A, Sjo ¨gren G. A comparison of fracture strength of yttrium- oxide- partially-stabilized zirconia ceramic crowns with varying core thickness, shapes and veneer ceramics. J Oral Rehabil 2004;31:682-8. https://doi.org/10.1111/j.1365-2842.2004.01284.x
  17. Vult von Steyern P, Ebbesson S, Holmgren J, Haag P, Nilner K. Fracture strength of two oxide ceramic crown systems after cyclic pre-loading and thermocycling. J Oral Rehabil 2006;33:682-9. https://doi.org/10.1111/j.1365-2842.2005.01604.x
  18. Craig RG. Restorative dental materials. St Louis: CV Mosby; 1989, p. 65.
  19. Lee SM, Jeong HC, Jeon YC. Fracture strength of zirconia monolithic crowns and metal-ceramic crowns after cyclic loading and thermocycling. J Korean Acad Prosthodont 2007;45:12-20.
  20. Aboushelib MN, de Jager N, Kleverlaan CJ, Feilzer AJ. Effect of loading method on the fracture mechanics of two layered all-ceramic restorative systems. Dent Mater 2007;23:952-9. https://doi.org/10.1016/j.dental.2006.06.036
  21. Oilo M, Gjerdet NR, Tvinnereim HM. The firing procedure influences properties of a zirconia core ceramic. Dent Mater 2008;24:471-5. https://doi.org/10.1016/j.dental.2007.04.008
  22. Dong JK, Luthy H, Wohlwend A, Sch¨arer P. Heat-pressed ceramics: Technology and strength. Int J Prosthodont 1992;5:9-16.
  23. Studart AR, Filser F, Kocher P, Gauckler LJ. In vitro lifetime of dental ceramics under cyclic loading in water. Biomaterials 2007;28:2695-705. https://doi.org/10.1016/j.biomaterials.2006.12.033
  24. Tinschert J, Natt G, Mohrbotter N, Spiekermann H, Schulze KA. Lifetime of alumina- and zirconia ceramics used for crown and bridge restorations. J Biomed Mater Res B Appl Biomater 2007;80:317-21.
  25. Potiket N, Chiche G, Finger IM. In vitro fracture strength of teeth restored with different all-ceramic crown systems. J Prosthet Dent 2004;92:491-5. https://doi.org/10.1016/j.prosdent.2004.09.001

Cited by

  1. A comparative study on the fracture behavior of zironia, glass infiltrated alumina and PFM full crown system vol.50, pp.4, 2012, https://doi.org/10.4047/jkap.2012.50.4.235
  2. Influence of fracture strength of zirconia ceramic restoration on thickness of veneer porcelain vol.42, pp.2, 2015, https://doi.org/10.14815/kjdm.2015.42.2.149
  3. 구강인기방법과 블록 종류에 따른 지르코니아 코핑의 변연적합도 비교 vol.16, pp.1, 2010, https://doi.org/10.5392/jkca.2016.16.01.151
  4. A study of fracture loads and fracture characteristics of teeth vol.11, pp.3, 2019, https://doi.org/10.4047/jap.2019.11.3.187