• Title/Summary/Keyword: Surface crystal

Search Result 2,463, Processing Time 0.025 seconds

Wide-Viewing Characteristics of Self-Formed Micro-Domains in a Liquid Crystal Display with Dielectric Surface Gratings

  • Yoon, Tae-Young;Park, Jae-Hong;Yu, Chang-Jae;Lee, Sin-Doo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.452-455
    • /
    • 2002
  • We demonstrate the wide-viewing characteristics of a twisted nematic liquid crystal display (LCD) with self-formed micro-domains through the topographical alignment and fringe field effects of dielectric surface gratings (DSG). The mutual optical compensation between micro-domains within each pixel eliminates the contrast inversion phenomenon of TN mode without complex surface treatments.

  • PDF

A Study on the Surface Polishing of Diamond Thin Films by Thermal Diffusion (열확산에 의한 다이아몬드 박막의 표면연마에 관한 연구)

  • Bae, Mun Ki;Kim, Tae Gyu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.2
    • /
    • pp.75-80
    • /
    • 2021
  • The crystal grains of polycrystalline diamond vary depending on deposition conditions and growth thickness. The diamond thin film deposited by the CVD method has a very rough growth surface. On average, the surface roughness of a diamond thin film deposited by CVD is in the range of 1-100 um. However, the high surface roughness of diamond is unsuitable for application in industrial applications, so the surface roughness must be lowered. As the surface roughness decreases, the scattering of incident light is reduced, the heat conduction is improved, the mechanical surface friction coefficient can be lowered, and the transmittance can also be improved. In addition, diamond-coated cutting tools have the advantage of enabling ultra-precise machining. In this study, the surface roughness of diamond was improved by thermal diffusion reaction between diamond carbon atoms and ferrous metals at high temperature for diamond thin films deposited by MPCVD.

Surface analysis of reactively ion-etched aluminum films in $CF_4$ plasma ($CF_4$ 플라즈마에서 반응성 이온식각한 알루미늄 박막의 표면분석)

  • 김동원;이원종
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.4
    • /
    • pp.351-357
    • /
    • 1995
  • The surface layer of the aluminum film reactively ion etched in $CF_4$ plasma was ana alyzed by using XPS. $AlF_3$ which is nonvolatile is formed at the aluminum surface. As the analyzed depth increases, the intensity of the $Al_{2p}$ peak of Al - F bonds decreases while that of a aluminum metallic bond increases. The thickness of the $AlF_x$ surface layer is 50~100 $\AA$ and the deep penetration of fluorine atoms is attributed to the mixing effect by the bombardment of incident particles. For the aluminum oxide film which is etched in $CF_4$ plasma under the same conditions, oxygen atoms are substituted by fluorine atoms to form $$AIF_x$ surface layer, which is m much thinner than that formed on aluminum surface.

  • PDF

Sliding Wear Behavior of Pure Metal, Fe and Cu Having a Cubic Crystal System (입방정계 순 금속 Fe, Cu의 미끄럼 마멸 거동)

  • Yi, S.K.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.6
    • /
    • pp.357-362
    • /
    • 2010
  • Dry sliding wear behavior of pure Fe and Cu which have BCC and FCC crystal structure, respectively, was investigated. The wear characteristics of the pure metals with different crystal structure were compared. Dry sliding wear tests were carried out using a pin-on-disk wear tester at various loads under the constant sliding speed condition of 0.15 m/s against a silica ball at room temperature. Sliding distance was fixed as 600 m for all wear tests. Wear rate of a specimen was calculated by dividing the weight loss of the specimen after the test by the specific gravity and sliding distance. Worn surfaces and wear debris were analyzed by SEM. The wear of both pure Fe and Cu proceeded with surface deformation, resulting in similar wear rates despite of their structure difference under the current test conditions. Wear rates of both metals were low if the surface deformation due to wear forms thick surface-deformation layer that is strain hardened beneath the wearing surface. The pure Cu specimens showed a lot of oxides on the worn surface when tested at low loads less than 5 N, which resulted in very low wear rate.

Effect of surface roughness on the quality of silicon epitaxial film grown after UV-irradiated gas phase cleaning

  • Kwon, Sung-Ku;Kim, Du-Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.5
    • /
    • pp.504-509
    • /
    • 1999
  • In-situ cleaning and subsequent silicon epitaxial film growth were performed in a load-locked reactor equipped with Hg-grid UV lamp and PBN heater to obtain the smooth and contaminant-free underlying surface and develop low-temperature epitaxial film growth process. The removals of organic and native oxide were investigated using UV-excited $O_2$ and $NF_{3}/H_{2}$, and the effect of the surface condition was examined on the quality of silicon epitaxial film grown at temperature as low as $750^{\circ}C$. UV-excited gas phase cleaning was found to be effective in removing the organic and native oxide successfully providing a smooth surface with RMS roughness of 0.5$\AA$ at optimal condition. Crystalline quality of epitaxial film was determined by smoothness of cleaned surface and the presence of native oxide and impurity. Crystalline defects such as dislocation loops or voids due to the surface roughness were observed by XTEM.

  • PDF

Study on the crystallization of quartz glass crucibles for preparation of single crystal silicon (단결정 실리콘 제조용 석영유리도가니의 결정화에 대한 연구)

  • Lim, Jong Won;Kim, Tae Huei;Park, Kyung Bong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.3
    • /
    • pp.99-105
    • /
    • 2018
  • In order to avoid un-uniform crystallization on the surface of a quartz glass crucible that is known to affect the production yield of the single crystal silicon, Ba (barium) was selected as a crystallization promotor and the inner surface of the crucible was coated using Ba (barium hydroxide octahydrate)-solution by the spray pyrolysis method. For un-coated crucible, it was found that the crystallization of its surface started at $1350^{\circ}C$, and at $1450^{\circ}C$ the surface was uniformly crystallized with ${\beta}$-cristobalite phase. It was found that the crucible coated with Ba began to be crystallized from $1000^{\circ}C$ and was uniformly crystallized on the crucible surface at $1300^{\circ}C$. In this case, ${\alpha}$-cristobalite and needle-shaped $BaSi_2O_5$ phase were created and disappeared as a crystal phase, and the ${\beta}$-cristobalite phase was eventually evenly distributed over the Ba-coated crucible surface.

Washing Effects on Generation of Pretilt Angle in NLC, 5CB, on a Polyimide Surface with Trifluoromethyl Moieties

  • Lee, Sang-Keuk;Hwang, Jeoung-Yeon;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.133-135
    • /
    • 2003
  • The washing effects on pretilt angle generation in a nematic liquid crystal (NLC), 4-n-pentyl-4’-cyanobiphenyl (5CB) on a rubbed polyimide (PI) surface with trifluoromethyl moiety have been successfully studied. The pretilt angle of 5CB is increased by the washing process on the rubbed PI surface. The surface tension on the rubbed PI surface increases with the rubbing strength RS and then saturated above RS=150 mm. The pretilt angle of 5CB for all washing processes on the rubbed PI surface decreases with the surface tension. We have found that the pretilt angle of 5CB on the rubbed PI surface may be attributed van der walls (VDW) dispersion interaction between the LC molecules and the polymer surfaces having trifluoromethyl moieties.

  • PDF

The effect of rotation on the macro-steps formation during 4H-SiC solution growth

  • Shin, Yun-Ji;Park, Tae-Yong;Bae, Si-Young;Jeong, Seong-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.294-297
    • /
    • 2019
  • New insights about macro-step formation has been investigated. The phenomena of surface instability caused by the interaction between step flow and fluid flow was describe in mechanical way. The rotation of the seed crystal in a clockwise direction was applied with a speed varied from 30 to 200 rpm during the TSSG process on the Si- and C-faces 4H-SiC. The macro-steps were formed along the two specific directions at different locations on the crystal for each, i.e., [10-10] or [01-10] directions or both. From the results, it is suggested that the macro-steps were generated from the micro-steps by interaction between step flow and fluid flow during the rotation of seed crystal. Furthermore, The fluid flow could be effective to control the micro- and/or macro-step behavior during solution growth.

Heat treatment induced morphological changes of $Ca^{++}$ implanted single crystal $Al_2O_3$ ($Ca^{++}$를 implant한 단결정 $Al_2O_3$에서 열처리에 의한 형태학적 변화)

  • 김배연
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.3
    • /
    • pp.327-333
    • /
    • 1999
  • Controlled Ca impurity implanted inner crack-like pore in the high purity alumina bi-crystal had been created by micro-fabrication technique, which includes ion implantation, photo-lithography, Ar ion milling, and hot press. The morphological change and the growth od crystals formed by heat treatment in Ca doped high purity single crystal alumina, were observed using optical microscopy. The dot was developed and hexagon like crystal appeared on inner surface of crack-like pore after heat treatment. Bar type crystals, probably CaO . $6Al_2O_3$, were observed on the inner surface of 100ppm Ca implanted specimen after 1 hour heat treatment at $1,500^{\circ}C$, but this bar type crystal disappeared after 1 hour heat treatment at $1,600^{\circ}C$. This disappearance means that there should be little increase of Ca solubility limit to alumina and/or changes of diffusion coefficient of Ca in alumina around this temperature.

  • PDF

QCM Study of β-Casein Adsorption on the Hydrophobic Surface: Effect of Ionic Strength and Cations

  • Lee, Myung-Hee;Park, Su-Kyung;Chung, Chin-Kap;Kim, Hack-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.7
    • /
    • pp.1031-1035
    • /
    • 2004
  • The adsorption kinetics of ${\beta}$-casein on a hydrophobic surface has been studied by means of the quartz crystal microbalance (QCM). The self assembled monolayer of 1-octadecanethiol on a gold coated quartz crystal was used as a hydrophobic surface for adsorption. The adsorption kinetics was monitored in different solution conditions. Formation of monolayer is observed in most cases. At high concentration of protein, micelle formation which is interrupted by high ionic strength of solution is observed. Casein binding cations such as $Ca^{2+},\;Ba^{2+}\;and\;Al^{3+}$ increase the hydrophobicity of the protein and the multiple layer adsorption occurs. The strong and weak points of the QCM method in the study of protein adsorption are discussed.