• Title/Summary/Keyword: Surface Passivation

Search Result 359, Processing Time 0.03 seconds

Passivation property of Al2O3 thin film for the application of n-type crystalline Si solar cells (N-type 결정질 실리콘 태양전지 응용을 위한 Al2O3 박막의 패시베이션 특성 연구)

  • Jeong, Myung-Il;Choi, Chel-Jong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.3
    • /
    • pp.106-110
    • /
    • 2014
  • The passivation property of $Al_2O_3$ thin film formed using atomic layer deposition (ALD) for the application of crystalline Si solar cells was investigated using microwave photoconductance decay (${\mu}$-PCD). After post-annealing at $400^{\circ}C$ for 5 min, $Al_2O_3$ thin film exhibited the structural stability having amorphous nature without the interfacial reaction between $Al_2O_3$ and Si. The post-annealing at $400^{\circ}C$ for 5 min led to an increase in the relative effective lifetime of $Al_2O_3$ thin film. This could be associated with the field effective passivation combined with surface passivation of textured Si. The capacitance-voltage (C-V) characteristics of the metal-oxide-semiconductor (MOS) with $Al_2O_3$ thin film post-annealed at $400^{\circ}C$ for 5 min was carried out to evaluate the negative fixed charge of $Al_2O_3$ thin film. From the relationship between flatband voltage ($V_{FB}$) and equivalent oxide thickness (EOT), which were extracted from C-V characteristics, the negative fixed charge of $Al_2O_3$ thin film was calculated to be $2.5{\times}10^{12}cm^{-2}$, of which value was applicable to the passivation layer of n-type crystalline Si solar cells.

Metal-Semiconductor-Metal Photodetector Fabricated on Thin Polysilicon Film (다결정 실리콘 박막으로 구성된 Metal-Semiconductor-Metal 광검출기의 제조)

  • Lee, Jae-Sung;Choi, Kyeong-Keun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.5
    • /
    • pp.276-283
    • /
    • 2017
  • A polysilicon-based metal-semiconductor-metal (MSM) photodetector was fabricated by means of our new methods. Its photoresponse characteristics were analyzed to see if it could be applied to a sensor system. The processes on which this study focused were an alloy-annealing process to form metal-polysilicon contacts, a post-annealing process for better light absorption of as-deposited polysilicon, and a passivation process for lowering defect density in polysilicon. When the alloy annealing was achieved at about $400^{\circ}C$, metal-polysilicon Schottky contacts sustained a stable potential barrier, decreasing the dark current. For better surface morphology of polysilicon, rapid thermal annealing (RTA) or furnace annealing at around $900^{\circ}C$ was suitable as a post-annealing process, because it supplied polysilicon layers with a smoother surface and a proper grain size for photon absorption. For the passivation of defects in polysilicon, hydrogen-ion implantation was chosen, because it is easy to implant hydrogen into the polysilicon. MSM photodetectors based on the suggested processes showed a higher sensitivity for photocurrent detection and a stable Schottky contact barrier to lower the dark current and are therefore applicable to sensor systems.

Interface engineering for high-k dielectric integration on III-V MOSFETs

  • Lee, Seong-Ju
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.154-155
    • /
    • 2012
  • In this work, we report the comprehensive study of performance enhancement of InGaAs n-MOSFET by plasma $PH_3$ p assivation. The calibrated plasma $PH_3$ passivation of the InGaA ssurface before CVD high-k dielectric deposition significantly improves interface quality, resulting in suppressed frequency dispersion in C-V, increase in drive-current with high electron mobility, and excellent thermal stability.

  • PDF

Encapsulated Silicon Nanocrystals Formed in Silica by Ion Beam Synthesis

  • Choi, Han-Woo;Woo, Hyung-Joo;Kim, Joon-Kon;Kim, Gi-Dong;Hong, Wan-Hong;Ji, Young-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.4
    • /
    • pp.525-528
    • /
    • 2004
  • The photoluminescence (PL) emission of Si nanocrystals synthesized by 400 keV Si ion implanted in $SiO_2$ is studied as a function of ion dose and annealing time. The formation of nanocrystals at around 600 nm from the surface was confirmed by RBS and HRTEM, and the Si nanocrystals showed a wide and very intense PL emission at 700-900 nm. The intensity of this emission showed a typical behaviour with a fast transitory increase to reach a saturation with the annealing time, however, the red shift increased continuously because of the Ostwald ripening. The oversaturation of dose derived a decrease of PL intensity because of the diminishment of quantum confinement. A strong enhancement of PL intensity by H passivation was confirmed also, and the possible mechanism is discussed.

A Research of the Characteristics of $Hg_{1-x}Cd_{x}$Te material by using Electro - Chemical Reduction (Electro-Chemical Reduction에 의한 $Hg_{1-x}Cd_{x}$Te재료의 특성 고찰)

  • 이상돈;김봉흡;강형부
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.05a
    • /
    • pp.38-41
    • /
    • 1994
  • The method of passivation for protecting the $Hg_{1-x}Cd_{x}$Te surface is important device fabrication process. Because the surface components are highly reactive leading to its chemical and electrical instability. Especially. the material of detecting for infrared radiation, of which composition is x=0.2 or 0.3, is narrow bandgap semi- conductor. The narrow bandgap semi conductors are largely governed by the properties of the semiconductor surface. The narrow bandgap semi-conductors are largely governed by the properties of the semiconductor surface. The electro-chemical processing of $Hg_{1-x}Cd_{x}$Te allows rigorous control of the surface chemistry and provides an in-suit monitor of surface reaction. So electro-chemical reduction at specific potential can be selectively eliminated the undesirable species on the surface and mainpulated to reproducibly attain the desired stoichiometry. This method shows to assess the quality of chemically treated good $Hg_{1-x}Cd_{x}$Te surface.

  • PDF

Surface Characteristics of Stainless Steel Wire for Dental and Medical Use (치과 및 의료용 스테인리스강선의 표면특성)

  • 최한철;고영무
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.4
    • /
    • pp.339-346
    • /
    • 2003
  • Stainless steel wire has been used in industry, dental and medical parts. Especially, it has been used widely for the dental orthodontic materials. The orthodontic wire requires good mechanical properties, such as elastic strength, combined with a high resistance to corrosion. To increase elastic strength and good corrosion resistance, drawing methods(one-step and two-step drawing) have been used and the electrochemical characteristics of drawed wire have been researched using potentiodynamic method in 0.9%NaCl and field emission scanning electron microscope. The one-step drawed wire showed the formation of rough surface. The hardness and tensile strength of two-step drawed wire increased. For the case of two-step drawed wire, the corrosion resistance and pitting potential increased compared with one-step drawed wire due to the drawing induced small surface roughness, such as scratch. The passivation and active current density decreased as the reduction in area for drawing increased.

A Study on the Application of Anti-Corrosion Techniques on the Surface of Oxygen Free Copper (무산소동의 표면부식 방지기술 적용에 관한 연구)

  • Joo, Hyung-Goun;Lee, Dae-Young;Zhang, Da Quan;Lee, Kang-Yong;Al-Hanash, Essam Khamis Ibrahim
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.425-429
    • /
    • 2009
  • The protection for copper tarnish was developed by surface treatment method and volatile corrosion inhibiting (VCI) technology. The performance of surface treatment and VCI material is also examined in simulated test environment. Benzotriazole (BTAH) solution that contained molybdate showed best performance than others. Usage of VCI materials with surface treatment was more effective. The protection film foamed on the surface of copper was investigated by auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). Molybdate does not participate in the formation of the protective film but promotes the passivation effect. This facilitates the stabilization of the cuprous oxide film, and strengthens the adsorption of BTAH.