• Title/Summary/Keyword: Support Features

Search Result 1,575, Processing Time 0.034 seconds

Pulmonary Nodule Detection based on Hierarchical 3D Block Analysis in Chest CT scans (흉부 CT영상에서 계층적 삼차원 블록 분석을 이용한 폐결절 검출)

  • Choi, Wook-Jin;Choi, Tae-Sun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.5 no.1
    • /
    • pp.13-19
    • /
    • 2012
  • In this paper, we propose the pulmonary nodule detection method based on hierarchical 3D block analysis. The proposed system consists of two main part. In the first part, we select the block which is need to analysis. In the second part, we analysis the selected blocks. We extract the shape based features of the object in the selected blocks. Support Vector Machine is applied to the extracted features to classify into nodules and non-nodules.

Raster Pipeline Implementation based on 3D Graphics Geometry Pipelines (3차원 그래픽스 기하 파이프라인 기반의 래스터 파이프라인 구현)

  • Baek, Nakhoon
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.8
    • /
    • pp.44-51
    • /
    • 2013
  • Raster operations are widely used to display full-color graphics images (or pixmaps) and single-color images (or bitmaps). These features are strongly needed for image processing applications and font output. However, current mobile graphics platforms, including OpenGL ES hardware implementations, do not directly support these features. To fully support those raster operations on the mobile graphics platforms, we interpreted the graphics images as a set of 3D points, and processed those 3D points through the typical 3D geometry pipelines, in a full-software implementation. Our implementation shows sufficient execution speeds, and passed the official conformance tests to show its correctness.

A Clustering Technique of Radar Signals using 4-Dimensional Features (4차원 특징 벡터에 의한 레이더 신호 클러스터링 기법)

  • Lee, Jong-Tae;Ju, Young-Kwan;Kim, Gwan-Tae;Jeon, Joong-Nam
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.10
    • /
    • pp.137-144
    • /
    • 2014
  • The Electronic Support System collects and analyzes the received radar signals in order to cope with the electronic attack in real-time. The radar-pulse clustering system classifies the radar signals that are considered to be emitted by a single source. This paper proposed a radar-pulse clustering algorithm based on four kinds of features: the direction, frequency, pulse width, and the difference of arrival time between two successive pulses. The experiment results show that the proposing algorithm could trace the moving emitter and classify the timely separated signals into different classes.

Prediction of subcellular localization of proteins using pairwise sequence alignment and support vector machine

  • Kim, Jong-Kyoung;Raghava, G. P. S.;Kim, Kwang-S.;Bang, Sung-Yang;Choi, Seung-Jin
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2004.11a
    • /
    • pp.158-166
    • /
    • 2004
  • Predicting the destination of a protein in a cell gives valuable information for annotating the function of the protein. Recent technological breakthroughs have led us to develop more accurate methods for predicting the subcellular localization of proteins. The most important factor in determining the accuracy of these methods, is a way of extracting useful features from protein sequences. We propose a new method for extracting appropriate features only from the sequence data by computing pairwise sequence alignment scores. As a classifier, support vector machine (SVM) is used. The overall prediction accuracy evaluated by the jackknife validation technique reach 94.70% for the eukaryotic non-plant data set and 92.10% for the eukaryotic plant data set, which show the highest prediction accuracy among methods reported so far with such data sets. Our numerical experimental results confirm that our feature extraction method based on pairwise sequence alignment, is useful for this classification problem.

  • PDF

Damage Detection of Railroad Tracks Using Piezoelectric Sensors (압전센서를 이용하는 철로에서의 손상 검색 기술)

  • Yun Chung-Bang;Park Seung-Hee;Inman Daniel J.
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.240-247
    • /
    • 2006
  • Piezoelectric sensor-based health monitoring technique using a two-step support vector machine (SYM) classifier is discussed for damage identification of a railroad track. An active sensing system composed of two PZT patches was investigated in conjunction with both impedance and guided wave propagation methods to detect two kinds of damage of the railroad track (one is a hole damage of 0.5cm in diameter at web section and the other is a transverse cut damage of 7.5cm in length and 0.5cm in depth at head section). Two damage-sensitive features were extracted one by one from each method; a) feature I: root mean square deviations (RMSD) of impedance signatures and b) feature II: wavelet coefficients for $A_0$ mode of guided waves. By defining damage indices from those damage-sensitive features, a two-dimensional damage feature (2-D DF) space was made. In order to minimize a false-positive indication of the current active sensing system, a two-step SYM classifier was applied to the 2-D DF space. As a result, optimal separable hyper-planes were successfully established by the two-step SYM classifier: Damage detection was accomplished by the first step-SYM, and damage classification was also carried out by the second step-SYM. Finally, the applicability of the proposed two-step SYM classifier has been verified by thirty test patterns.

  • PDF

A study of the functional requirements to management tool for software development projects (소프트웨어 개발 프로젝트를 위한 요구관리도구의 기능요건 연구)

  • Park, Koo-Rack
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.12
    • /
    • pp.113-120
    • /
    • 2011
  • Information system gradually increases the complexity and scale of the project, while if the project fails to occur. To analyze the causes of failure of the project a lack of understanding of your project, unclear requirements and requirements change, etc. of the software development life cycle from requirements analysis phase is to find the source of most. In this paper, a software development project needs analysis derived from the traceability between features and functionality, and development needs throughout the life cycle requirements during the ongoing change management tool was designed to allow. And among those related to the project through consultation with a sufficient consensus to build a common understanding of effective communication will discuss the features required to support.

Development of Accident Classification Model and Ontology for Effective Industrial Accident Analysis based on Textmining (효과적인 산업재해 분석을 위한 텍스트마이닝 기반의 사고 분류 모형과 온톨로지 개발)

  • Ahn, Gilseung;Seo, Minji;Hur, Sun
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.179-185
    • /
    • 2017
  • Accident analysis is an essential process to make basic data for accident prevention. Most researches depend on survey data and accident statistics to analyze accidents, but these kinds of data are not sufficient for systematic and detailed analysis. We, in this paper, propose an accident classification model that extracts task type, original cause materials, accident type, and the number of deaths from accident reports. The classification model is a support vector machine (SVM) with word occurrence features, and these features are selected based on mutual information. Experiment shows that the proposed model can extract task type, original cause materials, accident type, and the number of deaths with almost 100% accuracy. We also develop an accident ontology to express the information extracted by the classification model. Finally, we illustrate how the proposed classification model and ontology effectively works for the accident analysis. The classification model and ontology are expected to effectively analyze various accidents.

Face Detection and Recognition for Video Retrieval (비디오 검색을 위한 얼굴 검출 및 인식)

  • lslam, Mohammad Khairul;Lee, Hyung-Jin;Paul, Anjan Kumar;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.6
    • /
    • pp.691-698
    • /
    • 2008
  • We present a novel method for face detection and recognition methods applicable to video retrieval. The person matching efficiency largely depends on how robustly faces are detected in the video frames. Face regions are detected in video frames using viola-jones features boosted with the Adaboost algorithm After face detection, PCA (Principal Component Analysis) follows illumination compensation to extract features that are classified by SVM (Support Vector Machine) for person identification. Experimental result shows that the matching efficiency of the ensembled architecture is quit satisfactory.

  • PDF

Design of a Pattern Classifier for Pain Awareness using Electrocardiogram (심전도를 이용한 통증자각 패턴분류기 설계)

  • Lim, Hyunjun;Yoo, Sun Kook
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.9
    • /
    • pp.1509-1518
    • /
    • 2017
  • Although several methods have been used to assess the pain levels, few practical methods for classifying presence or absence of the pain using pattern classifiers have been suggested. The aim of this study is to design an pattern classifier that classifies the presence or absence of the pain using electrocardiogram (ECG). We measured the ECG signal from 10 subjects with the painless state and the pain state(Induced by mechanical stimulation). The 10 features of heart rate variability (HRV) were extracted from ECG - MeanRRI, SDNN, rMSSD, NN50, pNN50 in the time domain; VLF, LF, HF, Total Power, LF/HF in the frequency domain; and we used the features as input vector of the pattern classifier's artificial neural network (ANN) / support vector machine (SVM) for classifying the presence or absence of the pain. The study results showed that the classifiers using ANN / SVM could classify the presence or absence of the pain with accuracies of 81.58% / 81.84%. The proposed classifiers can be applied to the objective assessment of pain level.

Image Content Modeling for Meaning-based Retrieval (의미 기반 검색을 위한 이미지 내용 모델링)

  • 나연묵
    • Journal of KIISE:Databases
    • /
    • v.30 no.2
    • /
    • pp.145-156
    • /
    • 2003
  • Most of the content-based image retrieval systems focuses on similarity-based retrieval of natural picture images by utilizing color. shape, and texture features. For the neuroscience image databases, we found that retrieving similar images based on global average features is meaningless to pathological researchers. To realize the practical content-based retrieval on images in neuroscience databases, it is essential to represent internal contents or semantics of images in detail. In this paper, we present how to represent image contents and their related concepts to support more useful retrieval on such images. We also describe the operational semantics to support these advanced retrievals by using object-oriented message path expressions. Our schemes are flexible and extensible, enabling users to incrementally add more semantics on image contents for more enhanced content searching.