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Abstract

Predicting the destination of a protein in a cell gives valuable information for annotating the function of the protein.
Recent technological breakthroughs have led us to develop more accurate methods for predicting the subcellular
localization of proteins. The most important factor in determining the accuracy of these methods, is a way of
extracting uscful features from protein sequences. We propose a new method for extracting appropriate features only
from the sequence data by computing pairwise sequence alignment scores. As a classifier, support vector machine
(SVM) is used. The overall prediction accuracy evaluated by the jackknife validation technique reach 94.70% for the
eukaryotic non-plant data set and 92.10% for the eukaryotic plant data set, which show the highest prediction
accuracy among methods reported so far with such data sets. Our numerical experimental results confirm that our

feature extraction method based on pairwise sequence alignment, is useful for this classification problem.

organelle proteins that have been degraded. The

Introduction delivery of a protein to an appropriate organelle

Cellular organelles in a eukaryotic cell require a depends on an N-terminal signal sequence. Since
continuous supply of appropriate proteins to make the signal sequence specifying the same organelle
and maintain themselves. Proteins encoded in the is not well conserved, it is generally thought that
nuclear genome are synthesized on ribosomes in the factors in determining the destination are
the cytosol and delivered to the organelles in physico-chemical properties such as
which they are required. Here, we do not consider hydrophobicity or the position of charged amino
the proteins that are synthesized on ribosomes acids [1].

inside the mitochondria and chloroplasts because Predicting the destination of an unknown
they are not delivered to other organelles. Some protein can give a valuable hint for guessing the
proteins imported to ER are secreted from the cell possible function of the protein. Therefore, in
and other proteins imported to organelles replace recent years, numerous methods in computational
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biology have been developed for more accurate
prediction. In fact, this is a classification problem
that has been extensively studied in machine
learning and statistics communities, because class
labels related to subcellular locations are already
known in a set of training data. Various classifiers
such as artificial neural networks (ANN), support
vector machines (SVM), or k-nearest neighbor
algorithms (k-NN) have been applied to this
classification problem. However, a critical factor
in determining the classification or prediction
accuracy, lies in a way of feature extraction. Most
of prediction methods can be divided into two
classes, depending on their ways of feature
extraction: (1) features based on protein
sequences data; (2) features based on ontology
data. In the protein sequence-based approach, two
different feature extraction methods are popular.
These involve the recognition of N-terminal
sorting signals or the detection of amino acids
compositions from an entire sequence. The former
has the strong biological implication because the
signal sequénce specifying the cellular location of
a protein is located in the N-terminal region [2, 3].
However, it is difficult to recognize underlying
features from a highly diverse signal sequence
and to vectorize those features. The latter
approach partially overcomes these difficulties
but lose the information regarding the context
stored in the sequence data [4, 5, 6]. The
ontology-based approach has received much
attention recently because of its high prediction
accuracy [7, 8]. This approach extracts text
information of homologous sequences of a target

sequence by searching biological databases and

vectorizes the information. It is not surprising for
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this approach to show good performance because
it utilizes various extra information derived from
several sources.

In this paper, we propose a new method of
extracting underlying features only from the
sequence data in predicting cellular locations of
proteins. To this end, we introduce a pairwise
sequence alignment score so that a protein
sequence is presented to a SVM classifier as a
vector containing pairwise sequence alignment
scores. Our numerical experimental results
confirm that our proposed method considerably

improve the prediction accuracy.

Systems and Methods

Data sets

We used two data sets for training and evaluating
our prediction system. These data sets were
generated by Emanuelsson er al. (2000). All
sequences in the two data sets were extracted
from SWISS-PROT release 36, 37, or 38, and
their subcellular locations were chosen by
referring annotations in FT or CC field. In the
preprocessing step, all sequences containing
ambiguous amino acids such as B, Z, or X were
excluded, and sequences with high similarities
were removed for redundancy reduction. As
shown in Table 1, these data sets consist of 940
eukaryotic plant sequences with four classes
(chloroplast, mitochondrion, extracellular, and
other) and 2738 eukaryotic non-plant sequences

with three classes (mitochondrion, extracelluar,

and other).

Pairwise sequence alignment as a feature

extractor



Representing a protein sequence by the scores of
pairwise sequence alignments (SA) was already
applied to the SVM-pairwise for detecting remote
structural and evolutionary relationships [9]. In
many ways SVM-pairwise is directly analogous
to our prediction system. In the feature extraction
step, the SVM-pairwise vectorizes a protein
sequence by computing pairwise sequence
similarity scores between the target sequence and
all sequences in the training set. The resulting
vectors are then used as input to SVM for
classification. Yet locality makes a distinction
between the two methods. The SVM-pairwise
uses the Smith-Waterman algorithm for finding
the optimal local alignment because the global SA
of two very highly diverged sequences is not
possible. In contrast to the SVM-pairwise, our
prediction system uses the Needleman-Wunsch
algorithm for obtaining the optimal global
alignment [10]. In order to consider only N-
terminal signal sequences, all sequences were
truncated after first 90 residues, and then have the
same length. Additionally, it can be thought that
the whole N-terminal sequences are important in
determining subcellular locations. Therefore, it is
reasonable to use the global dynamic
programming algorithm.

For the global dynamic programming algorithm,
we used Matlab functions that are available at
her'. A d-dimensional feature vector Xy for the kth
protein sequence has the form

M

T
X =[x X505 X ]

where T denotes the matrix or vector transpose

operator and xy is the score of Needleman-

Thitp://www.cs.cornell.edu/courses/cs321/2001 fa/matlab_exa
mples.html
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Waunsch algorithm between sequence k and the i
th sequence in the training set. Note that d is equal
to the total number of sequences in the training set.
The gap penalty is -3 and the substitution matrix
is BLOSUM 50.

Table 1. Number of sequencesin each subcellular localization
category of eukaryotic plant and nonplant data sets.
(Emmanuelssonet al., 2000)

Number of
Species Subcellular localization
sequences
Chloroplast (cTP) 141
Mitochondirial (mTP) 368
Eukaryotic
Extracellular (SP) 269
Plant
Cytoplasmic + Nuclear
162
(Other)
Mitochondirial (mTP) 371
Eukaryotic Extracellular (SP) 715
Non-plant Cytoplasmic + Nuclear
1652

(Other)

Support vector machine as a classifier

SVM classifiers receive their popularity from the
fact that they are based on the concept of
statistical learning theory, or VC (Vapnik-
Chervonenkis) theory, and they can achieve high
performance in practical applications [11, 12].
SVM classifiers are basically kernel-based

learning algorithms and find the optimal
hyperplane decision boundary in the feature space.
In kernel-based algorithms, a kernel trick leads us
to process the data in a higher-dimensional feature
space constructed by a nonlinear mapping,
without the explicit knowledge of the nonlinear
mapping. In a view of statistics, the high
dimensionality of the feature space can cause the

curse of dimensionality. However, the optimal



separating hyperplane with a maximal margin in
the feature space, can relieve this problem. In
statistical learning theory, we can minimize the
complexity term of the upper bound of the
expected risk by maximizing the margin of the
separating hyperplane. The minimization of the
upper bound can be viewed as relieving the over-
fitting problem [13]. The maximization of the
margin can be formulated as a quadratic
optimization program so that a global solution can
be easily obtained.

In the present study, we used OSU SVM Matlab
toolbox 3.00 for the SVM classifier that is freely
available at here’. The prediction of subcellular
localization is a multi-class classification problem
but the SVM classifier can only deal with the
binary classification problem. Therefore, we need
to construct a set of binary classifier for multi-
class classification. We constructed (M-1)M/2
binary classifiers for $M$ classes. In this pairwise
classification, each possible pair of classes is
considered and a test pattern is classified by the
majority voting. This approach has two
advantages over the one versus the rest method.
The weak point of the latter approach is that it
compares the real values in outputs of $M$ binary
classifiers directly. Because each binary classifier
is trained on different binary classification
problems, their real values in outputs of the
classifiers may not be suitable for comparison. In
addition, in the 'one versus the rest' approach, the
numbers of positive and negative training data
points are not symmetric. These two weak points
can be solved by the pairwise classification [14].

The kernel function used in this study is the radial

2 http://www.ece.osu.edu’maj/osu_svm
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basis function (RBF) kernel with one parameter vy:
2
k(x,p) =€t @)

During the training and testing, only the RBF
kernel parameter y and the regularization
parameter C were considered and the remaining

parameters were kept constant.

The proposed prediction system

The overall schematic diagram of our prediction
system is illustrated in Fig. 1. The target protein
sequence is truncated after first 90 residues, in
order to take only N-terminal signal sequence into
account. The processed target sequence is then
converted into the corresponding feature vector
by computing the scores of Needleman-Wunsch
algorithm between the processed target sequence
and all other sequences in the training set. Here,
all sequences in the training set are also truncated
after first 90 residues. The training set can be
divided into two parts which are positive and
negative  vectorization set. The positive
vectorization set means all sequences of this set
belong to the same class with the target sequence.
The negative vectorization set denotes the
opposite case. Therefore, the discriminative
power of the feature vector is expected to increase
since it contains the information of positive and
negative examples. After this feature extraction
step, we obtain the fixed-length feature vector.
Note that the fixed dimension of the feature
vector is equal to the total number of the whole
training set. At the classification step, the feature
vector is used as the input to (M-1)M/2 binary
SVM classifiers for M classes. In this pairwise
classification, the feature vector is assigned to the

class associated with the highest value in voting.
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Fig. 1. The schematic diagram of our proposed
prediction system, is illustrated. Through the pairwise
sequence alignment, each protein sequence is converted
into the corresponding feature vector, by computing
Needleman-Wunsch scores between the protein
sequence and the whole sequences in the training data
set. The SVM classifier predict an appropriate class,
given a protein sequence.

Evaluation of the prediction system

The performance of our prediction system was
evaluated using the 5-fold cross-validation and
jackknife validation techniques. In the 5 -fold
cross-validation, the - whole data set - was
partitioned into five exclusive subsets, and in turn
one subset was used for the test data and the
remaining sets were used for the training data. In
this study, the 5-fold cross-validation was just
used for comparing the results obtained by this
validation technique. For more objective and
rigorous evaluation, we used the jackknife
validation. In this technique, one protein sequence
was left out in turn for the.test data and the rest

was used for the training data. In our prediction
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system, the dimension of the feature vector
depends on the validation technique because the
dimension is equal to the number of the training
data. To measure the performance, sensitivity,
specificity and Matthew's correlation coefficient
(MCC) [15] and overall accuracy were calculated

using the following equations:

()

Sensitivity(i) = —————, (3
(i) + fu(i)
e tp(i)
Specificity(i) = —————, @
tp(i)+ fp(i)
MCCi)=
tp()yx tn(i) = fp()x fn(i) (5)
\/(tP(i) + m(D)(tp(D)+ fo(D)(tn()+ fp())in(i)+ fn(D)
k
(i)
Overall accuracy = EIT— , (6)

where N is the total number of sequences, k is the
number of class, tp(i) (true positive) is the number
of correctly predicted sequences of class i, tn(i)
(true negative) is the number of correctly
predicted sequences which is not in class i, fp(i)
(false positive) is the number of over predicted
sequences of class i and fn(i) (false negative) is

the number of under pr edicted sequences of class

i.

Results

The performance measured for the eukaryotic
plant and non-plant data is shown in Tables 2 and
3. To select the appropriate parameter values, we
tested various parameter values of the RBF kernel
parameter y and the regularization parameter C

through the 5-fold cross-validation. Table 2 shows



Table 2. Performance comparison of different subcellular localization predictions on the eukaryotic plant data set

Method Category Sensitivity Specificity MCC Overall accuracy Reference
cTP 0.8511 0.8163 0.8003 this work
5-fold cross mTP 0.8886 0.9355 0.8536
0.8957
validation Sp 0.9375 0.9836 0.9435
other 0.8839 0.7654 0.7814
cTP 0.8794 0.8794 0.8562 this work
Jackknife mTP 0.9136 0.9535 0.8898
0.9210
validation SP 0.9492 0.9918 0.9581
other 0.9290 0.7956 0.8278
cTP 0.85 0.69 0.72
S-fold cross mTP 0.82 0.90 0.77 Emanuelsson et al.
0.853
validation SP 091 0.95 0.90 (2000}
other 0.85 0.78 0.77
Jackknife
0.861 Cai & Chou (2004)
validation

Table 3. Performance comparison of different subcellular localization pre-dictions on the eukaryotic non-plant data set.

Method Category Sensitity Specificity MCC Overall accuracy Reference
mTP 0.8702 0.8824 0.8565 this work
5-fold cross
SP 0.9216 0.9478 09116 0.9399
validation
other 0.9632 0.9492 0.8859
mTP 0.8785 0.8908 0.8662 this work
Jackknife
SP 0.9390 0.9557 0.9287 0.9470
validation
other 0.9656 0.9557 0.8981
mTP 0.89 0.67 0.73
5-fold cross Emanuelsson et al.
Sp 0.96 0.92 0.92 0.900
validation (2000)
other 0.88 0.97 0.82
mTP 0.78 0.82 0.77 Reczko and
5-fold cross
SP 0.93 091 0.89 0913 Hatzigeorgiou
validation
other 0.93 0.94 0.84 (2004)
Jackknife Cai and Chou
0.912
validation (2004)
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Table 4. Performances of our prediction system for various dimensions of the feature vector on the eukaryotic non-plant data set.

Dimension of feature

vector Category Sensitivity Specificity MCC Overall accuracy

mTP 0.7044 0.8333 0.7311

75 SP 0.8636 0.8763 0.8221 0.8829
other 0.9307 0.8945 0.7668
mTP 0.7707 0.8506 0.7805

150 Sp 09115 0.9101 0.8781 0.9120
other 0.9436 0.9248 0.8276
mTP 0.7983 0.8731 0.8096

300 SP 0.9245 0.9286 0.8999 0.9250
other 0.9534 0.9339 0.8526
mTP 0.8315 0.8750 0.8300

600 SP 0.9376 0.9376 0.9150 0.9336
other 0.9546 0.9442 0.8689
mTP 0.8702 0.8824 0.8565

Full Sp 0.9216 0.9478 0.9116 0.9399
other 0.9632 0.9492 0.8859

the results for the eukaryotic plant data through
the 5-fold cross-validation and the jackknife
validation. The overall prediction accuracy ( y =
0.008 and C = 10) evaluated by the 5 -fold cross-
validation and the jackknife validation reached
89.57% and 92.10%, respectively. The accuracy
measure by the jackknife validation was about
6~7% higher than those by other prediction
methods. The sensitivity, specificity and MCC for
each class were also improved‘considerably.

The results for the eukaryotic non -plant data are
shown in Table 3. The overall accuracy (y =0.005
and C = 7) evaluated by the jackknife validation
was 94.70% and the accuracy is about 3~4%
higher than those by other prediction methods.
The MCC for each class are improved
significantly.

In this study, we evaluated the performance of
our prediction system through two validation
techniques. In general, the jackknife validation is
more rigorous and the 5-fold cross-validation is
more likely to overestimate. However, our results

were the opposite. The reason is already

mentioned above. Because the dimension of the
jackknife validation is higher than that of the 5 -
fold cross-validation, the performance of the
jackknife higher. The

dependency of the performance on the dimension

validation becomes
of the feature vector is shown in Table 4. As the
dimension increases, the overall accuracy (y =
0.005 and C = 7) was improved. The results of
Table 4 were measured by the 5-fold cross-

validation for the eukaryotic non -plant data.

CONCLUDING REMARKS

Our proposed prediction system showed high
performance capability in predicting subcellular
localization of proteins. Taking into account the
significantly improved prediction accuracy, we
can conclude that our proposed feature extraction
step is well fitted to this classification problem.
To sum up, the advantages of our prediction
system are: (1) the discriminative power of the
feature vector is expected to increase since it
contains the information of positive and negative

data; (2) our prediction system has the strong
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biological implication because it considers only
N-terminal signal sequences; and (3) it is easy to
understand and implement our prediction system.
Despite these advantages, there remain two basic
limitations inherent in this approach. First, it takes
a long time to vectorize protein sequences
because of the dynamic programming algorithm.
Second, our prediction system is not suitable to
discriminate between cytoplasmic and nuclear

proteins since the sorting signals of these protein

sequences are not located at the N-terminal region.

Therefore, what remains to be improved by future
research is to extend our prediction system to

circumvent these limitations.
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