Based on Artificial Intelligence technology, AI-enabled warfare is expected to become the main issue in the future warfare. Natural language processing technology is a core technology of AI technology, and it can significantly contribute to reducing the information burden of underrstanidng reports, information objects and intelligences written in natural language by commanders and staff. In this paper, we propose a Language model-based Multi-source Information Integration (LAMII) framework to reduce the information overload of commanders and support rapid decision-making. The proposed LAMII framework consists of the key steps of representation learning based on language models in self-supervsied way and document integration using autoencoders. In the first step, representation learning that can identify the similar relationship between two heterogeneous sentences is performed using the self-supervised learning technique. In the second step, using the learned model, documents that implies similar contents or topics from multiple sources are found and integrated. At this time, the autoencoder is used to measure the information redundancy of the sentences in order to remove the duplicate sentences. In order to prove the superiority of this paper, we conducted comparison experiments using the language models and the benchmark sets used to evaluate their performance. As a result of the experiment, it was demonstrated that the proposed LAMII framework can effectively predict the similar relationship between heterogeneous sentence compared to other language models.
KIPS Transactions on Computer and Communication Systems
/
v.11
no.8
/
pp.249-258
/
2022
Since the advent of Bitcoin, various virtual assets have been actively traded through virtual asset services of virtual asset exchanges. Recently, security accidents have frequently occurred in virtual asset exchanges, so the government is obligated to obtain information security management system (ISMS) certification to strengthen information protection of virtual asset exchanges, and 56 additional specialized items have been established. In this paper, we compared the domain importance of ISMS and CryptoCurrency Security Standard (CCSS) which is a set of requirements for all information systems that make use of cryptocurrencies, and analyzed the results after mapping them to gain insight into the characteristics of each certification system. Improvements for 4 items of High Level were derived by classifying the priorities for improvement items into 3 stages: High, Medium, and Low. These results can provide priority for virtual asset and information system security, support method and systematic decision-making on improvement of certified items, and contribute to vitalization of virtual asset transactions by enhancing the reliability and safety of virtual asset services.
As artificial intelligence (AI) technology advances, the number of cases in which AI becomes an object or subject of moral judgment is increasing, and this trend is expected to accelerate. Although the area of AI in human society expands, relatively few studies have been conducted on how people perceive and respond to AI. Three studies examined the effect of the anthropomorphism of AI on its responsibility. We predicted that anthropomorphism would increase the responsibility perception, and perceived agency and perceived patiency for AI would mediate this effect. Although the manipulation was not effective, multiple analyses confirmed the indirect effect of perceived patiency. In contrast, the effect of perceived agency of AI was somewhat mixed, which makes the hypothesis partially supported by the overall result. This result shows that for the moral status of artificial agents, perceived patiency is relatively more critical than perceived agency. These results support the organic perspective on the moral status that argues the importance of patiency, and show that patiency is more important than agency in the anthropomorphism related study of AI and robots.
Korean Journal of Construction Engineering and Management
/
v.24
no.5
/
pp.22-34
/
2023
Predicting accurately the construction cost budget in the early stages of construction projects is crucial to support the client's decision-making and achieve the objectives of the construction project. This holds true for public construction projects as well. However, the current methods for predicting construction cost budgets in the early stages of public construction projects are not sophisticated enough in terms of accuracy and reliability, indicating a need for improvement. The objective of this study is to develop a construction cost budget prediction model that can be utilized in the early stages of public building projects using an artificial neural network (ANN). In this study, an artificial neural network model was developed using the SPSS Statistics program and the data provided by the Public Procurement Service. The level of construction cost budget prediction was analyzed, and the accuracy of the model was validated through additional testing. The validation results demonstrated that the developed artificial neural network model exhibited an error range for estimates that can be utilized in the early stages of projects, indicating the potential to predict construction cost budgets more accurately by incorporating various project conditions.
Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
/
v.6
no.5
/
pp.367-377
/
2016
The purpose of the projects for strengthening the Service Business Competitiveness, which had been sponsored by the Ministry of Trade, Industry and Energy, and managed by the NIPA, is to support for combining the whole business process of the SMEs with the business model considering the scientific aspects of the services, to enhance the productivity of them and to add the values of their activities. 5 organizations are selected in 2014, and 4 in 2015 as leading organizations for these projects. This study analyzed the efficiency of these projects using DEA. Throughout the analysis of the prior researches, this study used the amount of government-sponsored money as the input variable, and the number of new customer business, the sales revenue, and the number of new employment as the output variables. And the result of this analysis showed that the decision making unit 12, 15, and 21 was efficient. And from this study, we found out two more performance indicators such as, the number of new employment and the amount of sales revenue, besides the number of new customer businesses.
Corporate ESG performance (environmental, social, and corporate governance) reflecting a company's strategic sustainability has emerged as one of the main factors in today's investment decisions. The traditional ESG performance rating process is largely performed in a qualitative and subjective manner based on the institution-specific criteria, entailing limitations in reliability, predictability, and timeliness when making investment decisions. This study attempted to predict the corporate ESG rating through automated machine learning based on quantitative and disclosed corporate financial information. Using 12 types (21,360 cases) of market-disclosed financial information and 1,780 ESG measures available through the Korea Institute of Corporate Governance and Sustainability during 2019 to 2021, we suggested a deep neural network prediction model. Our model yielded about 86% of accurate classification performance in predicting ESG rating, showing better performance than other comparative models. This study contributed the literature in a way that the model achieved relatively accurate ESG rating predictions through an automated process using quantitative and publicly available corporate financial information. In terms of practical implications, the general investors can benefit from the prediction accuracy and time efficiency of our proposed model with nominal cost. In addition, this study can be expanded by accumulating more Korean and international data and by developing a more robust and complex model in the future.
Kim, Junyoung;Yoon, Inseok;Jung, Minhyuk;Joo, Seonu;Park, Seungeun;Hong, Yeungmin;Cho, Jongwoo;Park, Moonseo
Korean Journal of Construction Engineering and Management
/
v.23
no.3
/
pp.3-12
/
2022
In general construction project planning ratio of manpower and quantity of outputs produced, such as the construction estimate standard, is used as the criterion for labor productivity. This method is highly effective in construction projects with repetitive work, however, there is a limit to apply in large-scale projects with high complexity. This is because the influence of non-work time caused by various work interruption factors that act complexly on the productivity of the project is greater than the average labor productivity derived from the performance data of the project. Therefore, this study proposes a productivity measurement method that can evaluate the characteristics of construction works and the cause of non-working time. To this end, first, detailed work processes and their non-work factors for each work type are defined, and the Adv-FMR technique is developed for quantitatively measuring them. Next, based on the concept of obtainable productivity, methods for comparative productivity analysis by work type, evaluating non-work factors, and deriving productivity improvement methods are proposed. Finally, a case study is conducted to validate that the analysis results based on Adv-FMR data can support the decision-making of construction managers on productivity management.
A couple of previous studies have warned against the use of homogeneous choice models in assessing the effect of reference price since unaccounted for response heterogeneity may result in spurious reference price effects(Chang, Siddarth and Weinberg 1999; Bell and Lattin 2000). According to Meyer and Kahn(1991), not accounting for consideration set heterogeneity may also bias the effect parameters in the choice model. Therefore, failure to account for these two sources of bias, in fact, have cast doubt on the empirical support for reference price effects in general. In view of aforementioned potential sources of bias, the author investigates the robustness of loss aversion effect in the reference-dependent model after accounting for heterogeneity in response as well as consideration set. The proposed model defines individual household's consideration set based on the posterior distribution of preference obtained from the Empirical Bayes approach. In addition, the same posterior distribution is used to form household-specific reference prices. Response heterogeneity correction is carried out via the Latent Class approach. The proposed model outperforms the Reference-Dependent model that includes the reference price measure most often employed in the previous studies. This implies that as a way of simplifying decision task, consumers restrict their consideration set to a subset of available brands not only in making a brand choice but also in forming reference prices.
KSCE Journal of Civil and Environmental Engineering Research
/
v.44
no.1
/
pp.85-93
/
2024
The monitoring of environmental information (e.g. noise, dust, vibration, temperature, humidity) is crucial to the safe and sustainable operation of a construction site. However, commercial sensors exhibit certain drawbacks when applied on-site. First, the installation cost is prohibitively high. Second, these sensors have been engineered without considering the rugged and harsh conditions of a construction site, resulting in error-prone sensing. Third, construction sites are compelled to allocate additional resources in terms of manpower, expenses, and physical spaces to accommodate individual sensors. This research developed an integrated sensing module to measure the environmental information in construction site. The sensing module slashes the installation cost to 3.3%, is robust enough to harsh and outdoor sites, and consolidates multiple sensors into a single unit. The sensing module also supports GPS, LTE, and real-time sensing. The evaluation showed remarkable results including 97.5% accuracy and 99.9% precision in noise measurement, an 89.7% accuracy in dust measurement, and a 93.5% reliability in data transmission. This research empowers the collection of substantial volumes and high-quality environmental data from construction sites, providing invaluable support to decision-making process. These encompass objective regulatory compliance checking, simulations of environmental data dispersion, and the development of environmental mitigation strategies.
In this scholarly investigation, the focus is placed on the transformative potential of edge computing in enhancing Intelligent Transportation Systems (ITS) for the facilitation of autonomous driving. The intrinsic capability of edge computing to process voluminous datasets locally and in a real-time manner is identified as paramount in meeting the exigent requirements of autonomous vehicles, encompassing expedited decision-making processes and the bolstering of safety protocols. This inquiry delves into the synergy between edge computing and extant ITS infrastructures, elucidating the manner in which localized data processing can substantially diminish latency, thereby augmenting the responsiveness of autonomous vehicles. Further, the study scrutinizes the deployment of edge servers, an array of sensors, and Vehicle-to-Everything (V2X) communication technologies, positing these elements as constituents of a robust framework designed to support instantaneous traffic management, collision avoidance mechanisms, and the dynamic optimization of vehicular routes. Moreover, this research addresses the principal challenges encountered in the incorporation of edge computing within ITS, including issues related to security, the integration of data, and the scalability of systems. It proffers insights into viable solutions and delineates directions for future scholarly inquiry.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.