• 제목/요약/키워드: Supervised Data

검색결과 661건 처리시간 0.025초

Estimating Regression Function with $\varepsilon-Insensitive$ Supervised Learning Algorithm

  • Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제15권2호
    • /
    • pp.477-483
    • /
    • 2004
  • One of the major paradigms for supervised learning in neural network community is back-propagation learning. The standard implementations of back-propagation learning are optimal under the assumptions of identical and independent Gaussian noise. In this paper, for regression function estimation, we introduce $\varepsilon-insensitive$ back-propagation learning algorithm, which corresponds to minimizing the least absolute error. We compare this algorithm with support vector machine(SVM), which is another $\varepsilon-insensitive$ supervised learning algorithm and has been very successful in pattern recognition and function estimation problems. For comparison, we consider a more realistic model would allow the noise variance itself to depend on the input variables.

  • PDF

Effective Acoustic Model Clustering via Decision Tree with Supervised Decision Tree Learning

  • Park, Jun-Ho;Ko, Han-Seok
    • 음성과학
    • /
    • 제10권1호
    • /
    • pp.71-84
    • /
    • 2003
  • In the acoustic modeling for large vocabulary speech recognition, a sparse data problem caused by a huge number of context-dependent (CD) models usually leads the estimated models to being unreliable. In this paper, we develop a new clustering method based on the C45 decision-tree learning algorithm that effectively encapsulates the CD modeling. The proposed scheme essentially constructs a supervised decision rule and applies over the pre-clustered triphones using the C45 algorithm, which is known to effectively search through the attributes of the training instances and extract the attribute that best separates the given examples. In particular, the data driven method is used as a clustering algorithm while its result is used as the learning target of the C45 algorithm. This scheme has been shown to be effective particularly over the database of low unknown-context ratio in terms of recognition performance. For speaker-independent, task-independent continuous speech recognition task, the proposed method reduced the percent accuracy WER by 3.93% compared to the existing rule-based methods.

  • PDF

신경 망의 지도 학습을 위한 로그 간격의 학습 자료 구성 방식과 손실 함수의 성능 평가 (Performance Evaluation of Loss Functions and Composition Methods of Log-scale Train Data for Supervised Learning of Neural Network)

  • 송동규;고세헌;이효민
    • Korean Chemical Engineering Research
    • /
    • 제61권3호
    • /
    • pp.388-393
    • /
    • 2023
  • 지도 학습 기반의 신경 망을 활용한 공학적 자료의 분석은 화학공학 공정 최적화, 미세 먼지 농도 추정, 열역학적 상평형 예측, 이동 현상 계의 물성 예측 등 다양한 분야에서 활용되고 있다. 신경 망의 지도 학습은 학습 자료를 요구하며, 주어진 학습 자료의 구성에 따라 학습 성능이 영향을 받는다. 빈번히 관찰되는 공학적 자료 중에는 DNA의 길이, 분석 물질의 농도 등과 같이 로그 간격으로 주어지는 자료들이 존재한다. 본 연구에서는 넓은 범위에 분포된 로그 간격의 학습 자료를 기계 학습으로 처리하는 경우, 사용 가능한 손실 함수들의 학습 성능을 정량적으로 평가하였으며, 적합한 학습 자료 구성 방식을 연구하였다. 이를 수행하고자, 100×100의 가상 이미지를 활용하여 기계 학습의 회귀 과업을 구성하였다. 4개의 손실 함수들에 대하여 (i) 오차 행렬, (ii) 최대 상대 오차, (iii) 평균 상대 오차로 정량적 평가하여, mape 혹은 msle가 본 연구에서 다룬 과업에 대해 최적의 손실 함수가 됨을 알아내었다. 또한, 학습 자료의 값이 넓은 범위에 걸쳐 분포하는 경우, 학습 자료의 구성을 로그 간격 등을 고려하여 균등 선별하는 방식이 높은 학습 성능을 보임을 밝혀내었다. 본 연구에서 다룬 회귀 과업은 DNA의 길이 예측, 생체 유래 분자 분석, 콜로이드 용액의 농도 추정 등의 공학적 과업에 적용 가능하며, 본 결과를 활용하여 기계 학습의 성능과 학습 효율의 증대를 기대할 수 있을 것이다.

Comparative Analysis of Supervised and Phenology-Based Approaches for Crop Mapping: A Case Study in South Korea

  • Ehsan Rahimi;Chuleui Jung
    • 대한원격탐사학회지
    • /
    • 제40권2호
    • /
    • pp.179-190
    • /
    • 2024
  • This study aims to compare supervised classification methods with phenology-based approaches, specifically pixel-based and segment-based methods, for accurate crop mapping in agricultural landscapes. We utilized Sentinel-2A imagery, which provides multispectral data for accurate crop mapping. 31 normalized difference vegetation index (NDVI) images were calculated from the Sentinel-2A data. Next, we employed phenology-based approaches to extract valuable information from the NDVI time series. A set of 10 phenology metrics was extracted from the NDVI data. For the supervised classification, we employed the maximum likelihood (MaxLike) algorithm. For the phenology-based approaches, we implemented both pixel-based and segment-based methods. The results indicate that phenology-based approaches outperformed the MaxLike algorithm in regions with frequent rainfall and cloudy conditions. The segment-based phenology approach demonstrated the highest kappa coefficient of 0.85, indicating a high level of agreement with the ground truth data. The pixel-based phenology approach also achieved a commendable kappa coefficient of 0.81, indicating its effectiveness in accurately classifying the crop types. On the other hand, the supervised classification method (MaxLike) yielded a lower kappa coefficient of 0.74. Our study suggests that segment-based phenology mapping is a suitable approach for regions like South Korea, where continuous cloud-free satellite images are scarce. However, establishing precise classification thresholds remains challenging due to the lack of adequately sampled NDVI data. Despite this limitation, the phenology-based approach demonstrates its potential in crop classification, particularly in regions with varying weather patterns.

문헌간 유사도를 이용한 자동분류에서 미분류 문헌의 활용에 관한 연구 (Utilizing Unlabeled Documents in Automatic Classification with Inter-document Similarities)

  • 김판준;이재윤
    • 정보관리학회지
    • /
    • 제24권1호
    • /
    • pp.251-271
    • /
    • 2007
  • 문헌간 유사도를 자질로 사용하는 분류기에서 미분류 문헌을 학습에 활용하여 분류 성능을 높이는 방안을 모색해 보았다. 자동분류를 위해서 다량의 학습문헌을 수작업으로 확보하는 것은 많은 비기 들기 때문에 미분류 문헌의 활용은 실용적인 면에서 중요하다. 미분류 문헌을 활용하는 준지도학습 알고리즘은 대부분 수작업으로 분류된 문헌을 학습데이터로 삼아서 미분류 문헌을 분류하는 첫 번째 단계와, 수작업으로 분류된 문헌과 자동으로 분류된 문헌을 모두 학습 데이터로 삼아서 분류기를 학습시키는 두 번째 단계로 구성된다. 이 논문에서는 문헌간 유사도 자질을 적용하는 상황을 고려하여 두 가지 준지도학습 알고리즘을 검토하였다. 이중에서 1단계 준지도학습 방식은 미분류 문헌을 문헌유사도 자질 생성에만 활용하므로 간단하며, 2단계 준지도학습 방식은 미분류 문헌을 문헌유사도 자질생성과 함께 학습 예제로도 활용하는 알고리즘이다. 지지벡터기계와 나이브베이즈 분류기를 이용한 실험 결과, 두 가지 준지도학습 방식 모두 미분류 문헌을 활용하지 않는 지도학습 방식보다 높은 성능을 보이는 것으로 나타났다. 특히 실행효율을 고려한다면 제안된 1단계 준지도학습 방식이 미분류 문헌을 활용하여 분류 성능을 높일 수 있는 좋은 방안이라는 결론을 얻었다.

학습 샘플 선택을 이용한 교사 랭크 정규화 (Supervised Rank Normalization with Training Sample Selection)

  • 허경용;최훈;윤주상
    • 한국컴퓨터정보학회논문지
    • /
    • 제20권1호
    • /
    • pp.21-28
    • /
    • 2015
  • 특징 정규화는 인식기를 적용하기 이전의 전처리 단계로 특징 차원에 따라 서로 다른 스케일에 의해 발생하는 오류를 줄이기 위해 널리 사용된다. 하지만 기존 정규화 방법은 클래스 라벨을 고려하지 않으므로 정규화 결과가 인식률에서 최적임을 보장하지 못하는 문제점이 있다. 이를 개선하기 위해 클래스 라벨을 사용하여 정규화를 시행하는 교사 정규화 방법이 제안되었고 기존 정규화 방법에 비해 나은 성능을 보임이 입증되었다. 이 논문에서는 교사 랭크 정규화 방법에 학습 샘플 선택 방법을 적용함으로써 교사 랭크 정규화 방법을 더욱 개선할 수 있는 방법을 제안한다. 학습 샘플 선택은 잡음이 많은 샘플을 학습에서 제외함으로써 잡음에 보다 강한 분류기를 학습시키는 전처리 단계로 많이 사용되며 랭크 정규화에서도 역시 사용될 수 있다. 학습 샘플 선택은 이웃한 샘플이 속하는 클래스와 이웃한 샘플까지의 거리를 바탕으로 하는 두 가지 척도를 제안하였고, 두 가지 척도 모두에서 기존 정규화 방법에 비해 인식률이 향상되었음을 실험 결과를 통해 확인할 수 있었다.

Self-supervised Graph Learning을 통한 멀티모달 기상관측 융합 (Multi-modal Meteorological Data Fusion based on Self-supervised Learning for Graph)

  • 전현주;강전호;권인혁
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.589-591
    • /
    • 2023
  • 현재 수치예보 시스템은 항공기, 위성 등 다양한 센서에서 얻은 다종 관측 데이터를 동화하여 대기 상태를 추정하고 있지만, 관측변수 또는 물리량이 서로 다른 관측들을 처리하기 위한 계산 복잡도가 매우 높다. 본 연구에서 기존 시스템의 계산 효율성을 개선하여 관측을 평가하거나 전처리하는 데에 효율적으로 활용하기 위해, 각 관측의 특성을 고려한 자기 지도학습 방법을 통해 멀티모달 기상관측으로부터 실제 대기 상태를 추정하는 방법론을 제안하고자 한다. 비균질적으로 수집되는 멀티모달 기상관측 데이터를 융합하기 위해, (i) 기상관측의 heterogeneous network를 구축하여 개별 관측의 위상정보를 표현하고, (ii) pretext task 기반의 self-supervised learning을 바탕으로 개별 관측의 특성을 표현한다. (iii) Graph neural network 기반의 예측 모델을 통해 실제에 가까운 대기 상태를 추정한다. 제안하는 모델은 대규모 수치 시뮬레이션 시스템으로 수행되는 기존 기술의 한계점을 개선함으로써, 이상 관측 탐지, 관측의 편차 보정, 관측영향 평가 등 관측 전처리 기술로 활용할 수 있다.

준감독 학습과 공간 유사성을 이용한 비접근 지역의 작물 분류 - 북한 대홍단 지역 사례 연구 - (Crop Classification for Inaccessible Areas using Semi-Supervised Learning and Spatial Similarity - A Case Study in the Daehongdan Region, North Korea -)

  • 곽근호;박노욱;이경도;최기영
    • 대한원격탐사학회지
    • /
    • 제33권5_2호
    • /
    • pp.689-698
    • /
    • 2017
  • 이 논문에서는 비접근 지역의 작물 분류를 목적으로 준감독 학습에 인접 화소의 공간 유사성 정보를 결합하는 분류 방법론을 제안하였다. 적은 수의 훈련 자료를 이용한 초기 분류 결과로부터 신뢰성 높은 훈련 자료의 추출을 위해 준감독 학습 기반의 반복 분류를 적용하였으며, 새롭게 훈련 자료 추출시 인접한 화소의 분류 항목을 고려함으로써 불확실성이 낮은 훈련 자료를 추출하고자 하였다. 북한 대홍단에서 수집된 다중시기 Landsat-8 OLI 영상을 이용한 밭작물 구분의 사례 연구를 통해 제안된 분류 방법론의 적용 가능성을 검토하였다. 사례 연구 결과, 초기 분류 결과에서 나타난 작물과 산림의 오분류와 고립된 화소가 제안 분류 방법론에서 완화되었다. 또한 인접 화소의 분류 결과를 고려한 훈련 자료 추출을 통해 이러한 오분류 완화 효과가 더욱 두드러지게 나타났으며, 초기 분류 결과와 기존 준감독 학습에 비해 고립된 화소도 감소되었다. 따라서 비접근 지역으로 인해 훈련 자료의 확보가 어려울 경우 이 연구에서 제안된 방법론이 작물 분류에 유용하게 적용될 수 있을 것으로 기대된다.

산림지역 분류를 위한 SPOT-5 및 KOMPSAT-2 영상의 감독분류 적용성 (Applicability of Supervised Classification for Subdividing Forested Areas Using SPOT-5 and KOMPSAT-2 Data)

  • 최재용;이상혁;이솔애;지승용;이상훈
    • 한국환경복원기술학회지
    • /
    • 제18권2호
    • /
    • pp.89-104
    • /
    • 2015
  • In order to effectively manage forested areas in South Korea on a national scale, using remotely sensed data is considered most suitable. In this study, utilizing Land coverage maps and Forest type maps of national geographic information instead of collecting field data was tested for conducting supervised classification on SPOT-5 and KOMPSAT-2 imagery focusing on forested areas. Supervised classification were conducted in two ways: analysing a whole area around the study site and/or only forested areas around the study site, using Support Vector Machine. The overall accuracy for the classification on the whole area ranged from 54.9% to 68.9% with kappa coefficients of over 0.4, which meant the supervised classification was in general considered moderate because of sub-classifying forested areas into three categories (i.e. hardwood, conifer, mixed forests). Compared to this, the overall accuracy for forested areas were better for sub-classification of forested areas probably due to less distraction in the classification. To further improve the overall accuracy, it is needed to gain individual imagery rather than mosaic imagery to use more spetral bands and select more suitable conditions such as seasonal timing. It is also necessary to obtain precise and accurate training data for sub-classifying forested areas. This new approach can be considered as a basis of developing an excellent analysis manner for understanding and managing forest landscape.

그래프 임베딩 및 준지도 기반의 이더리움 피싱 스캠 탐지 (Ethereum Phishing Scam Detection based on Graph Embedding and Semi-Supervised Learning)

  • 정유영;김경태;임동혁
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제12권5호
    • /
    • pp.165-170
    • /
    • 2023
  • 최근 블록체인 기술이 부상하면서 이를 이용한 암호화폐 플랫폼이 늘어나며 화폐 거래가 활발이 이뤄지고 있다. 그러나 암호화폐의 특성을 악용한 범죄 또한 늘어나 문제가 되고 있다. 특히 피싱 스캠은 이더리움 사이버 범죄의 과반수 이상을 차지하며 주요 보안 위협원으로 여겨지고 있다. 따라서 효과적인 피싱 스캠 탐지 방법이 시급하다. 그러나 전체 이더리움 참여 계정 주소에서 라벨링된 피싱 주소의 부족으로 인한 데이터 불균형 문제로 지도학습에 충분한 데이터 제공이 어려운 상황이다. 이를 해결하기 위하여 본 논문에서는 이더리움 트랜잭션 네트워크를 고려한 효과적인 그래프 임베딩 기법인 trans2vec과 준지도 학습 모델 tri-training을 함께 사용하여 라벨링된 데이터 뿐만 아니라 라벨링되지 않은 데이터도 최대한 활용하는 피싱 스캠 탐지 방법을 제안한다.