• Title/Summary/Keyword: Supervised Data

Search Result 651, Processing Time 0.029 seconds

Dam Sensor Outlier Detection using Mixed Prediction Model and Supervised Learning

  • Park, Chang-Mok
    • International journal of advanced smart convergence
    • /
    • v.7 no.1
    • /
    • pp.24-32
    • /
    • 2018
  • An outlier detection method using mixed prediction model has been described in this paper. The mixed prediction model consists of time-series model and regression model. The parameter estimation of the prediction model was performed using supervised learning and a genetic algorithm is adopted for a learning method. The experiments were performed in artificial and real data set. The prediction performance is compared with the existing prediction methods using artificial data. Outlier detection is conducted using the real sensor measurements in a dam. The validity of the proposed method was shown in the experiments.

Semi-Supervised Recursive Learning of Discriminative Mixture Models for Time-Series Classification

  • Kim, Minyoung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.186-199
    • /
    • 2013
  • We pose pattern classification as a density estimation problem where we consider mixtures of generative models under partially labeled data setups. Unlike traditional approaches that estimate density everywhere in data space, we focus on the density along the decision boundary that can yield more discriminative models with superior classification performance. We extend our earlier work on the recursive estimation method for discriminative mixture models to semi-supervised learning setups where some of the data points lack class labels. Our model exploits the mixture structure in the functional gradient framework: it searches for the base mixture component model in a greedy fashion, maximizing the conditional class likelihoods for the labeled data and at the same time minimizing the uncertainty of class label prediction for unlabeled data points. The objective can be effectively imposed as individual mixture component learning on weighted data, hence our mixture learning typically becomes highly efficient for popular base generative models like Gaussians or hidden Markov models. Moreover, apart from the expectation-maximization algorithm, the proposed recursive estimation has several advantages including the lack of need for a pre-determined mixture order and robustness to the choice of initial parameters. We demonstrate the benefits of the proposed approach on a comprehensive set of evaluations consisting of diverse time-series classification problems in semi-supervised scenarios.

A Constraint-based Semi-supervised Clustering Through Initial Prediction of Unlabeled Data (비분류표시 데이터의 초기예측을 통한 제약기반 부분-지도 군집분석)

  • Kim, Eung-Gu;Jeon, Chi-Hyeok
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2007.11a
    • /
    • pp.383-387
    • /
    • 2007
  • Traditional clustering is regarded as an unsupervised teaming to analyze unlabeled data. Semi-supervised clustering uses a small amount of labeled data to predict labels of unlabeled data as well as to improve clustering performance. Previous methods use constraints generated from available labeled data in clustering process. We propose a new constraint-based semi-supervised clustering method by reflecting initial predicted labels of unlabeled data. We evaluate and compare the performance of the proposed method in terms of classification errors through numerical experiments with blinded labeled data.

  • PDF

Determining Feature-Size for Text to Numeric Conversion based on BOW and TF-IDF

  • Alyamani, Hasan J.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.283-287
    • /
    • 2022
  • Machine Learning is the most popular method used in data science. Growth of data is not only numeric data but also text data. Most of the algorithm of supervised and unsupervised machine learning algorithms use numeric data. Now it is required to convert text data into numeric. There are many techniques for this conversion. Researcher confuses which technique is best in what situation. Here in proposed work BOW (Bag-of-Words) and TF-IDF (Term-Frequency-Inverse-Document-Frequency) has been studied based on different features to determine best method. After experimental results on text data, TF-IDF and BOW both provide better performance at range from 100 to 150 number of features.

Performance Change accroding to Data Set Size Change in Semi-Supervised Learning based Object Detection (준지도 학습 기반 객체 탐지 모델에서 데이터셋 변화에 따른 성능 변화)

  • Seungsoo Yu;Wonjun Hwang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.11a
    • /
    • pp.88-90
    • /
    • 2022
  • Semi Supervised Learning 은 일부의 data 에는 labeling 을 하고 나머지 data 에는 labeling 을 안한채로 학습을 진행하는 방법이다. Object Detection 은 이미지에서 여러개의 객체들의 대한 위치를 여러개의 바운딩 박스로 지정해서 찾는 Computer Vision task 이다. 당연하게도, model training 단계에서 사용되는 data set 의 크기가 크고 객체가 많을 수록 일반적으로 model 의 성능이 좋아 질 것이다. 하지만 실험 환경에 따라 data set 을 잘 확보하지 못하던가, 실험 장치가 데이터 셋을 감당하지 못하는 등의 문제가 발생 할 수 있다. 그렇기에 본 논문에서는 semi supervised learning based object detection model 을 알아보고 data set 의 크기를 조절해가며 modle 을 training 시킨 뒤 data set 의 크기에 따라 성능이 어떻게 변화하는 지를 알아 볼 것이다.

  • PDF

A Semi-supervised Dimension Reduction Method Using Ensemble Approach (앙상블 접근법을 이용한 반감독 차원 감소 방법)

  • Park, Cheong-Hee
    • The KIPS Transactions:PartD
    • /
    • v.19D no.2
    • /
    • pp.147-150
    • /
    • 2012
  • While LDA is a supervised dimension reduction method which finds projective directions to maximize separability between classes, the performance of LDA is severely degraded when the number of labeled data is small. Recently semi-supervised dimension reduction methods have been proposed which utilize abundant unlabeled data and overcome the shortage of labeled data. However, matrix computation usually used in statistical dimension reduction methods becomes hindrance to make the utilization of a large number of unlabeled data difficult, and moreover too much information from unlabeled data may not so helpful compared to the increase of its processing time. In order to solve these problems, we propose an ensemble approach for semi-supervised dimension reduction. Extensive experimental results in text classification demonstrates the effectiveness of the proposed method.

A Comparison Study of Classification Algorithms in Data Mining

  • Lee, Seung-Joo;Jun, Sung-Rae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • Generally the analytical tools of data mining have two learning types which are supervised and unsupervised learning algorithms. Classification and prediction are main analysis tools for supervised learning. In this paper, we perform a comparison study of classification algorithms in data mining. We make comparative studies between popular classification algorithms which are LDA, QDA, kernel method, K-nearest neighbor, naive Bayesian, SVM, and CART. Also, we use almost all classification data sets of UCI machine learning repository for our experiments. According to our results, we are able to select proper algorithms for given classification data sets.

Attentive Transfer Learning via Self-supervised Learning for Cervical Dysplasia Diagnosis

  • Chae, Jinyeong;Zimmermann, Roger;Kim, Dongho;Kim, Jihie
    • Journal of Information Processing Systems
    • /
    • v.17 no.3
    • /
    • pp.453-461
    • /
    • 2021
  • Many deep learning approaches have been studied for image classification in computer vision. However, there are not enough data to generate accurate models in medical fields, and many datasets are not annotated. This study presents a new method that can use both unlabeled and labeled data. The proposed method is applied to classify cervix images into normal versus cancerous, and we demonstrate the results. First, we use a patch self-supervised learning for training the global context of the image using an unlabeled image dataset. Second, we generate a classifier model by using the transferred knowledge from self-supervised learning. We also apply attention learning to capture the local features of the image. The combined method provides better performance than state-of-the-art approaches in accuracy and sensitivity.

Sentiment Analysis to Evaluate Different Deep Learning Approaches

  • Sheikh Muhammad Saqib ;Tariq Naeem
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.11
    • /
    • pp.83-92
    • /
    • 2023
  • The majority of product users rely on the reviews that are posted on the appropriate website. Both users and the product's manufacturer could benefit from these reviews. Daily, thousands of reviews are submitted; how is it possible to read them all? Sentiment analysis has become a critical field of research as posting reviews become more and more common. Machine learning techniques that are supervised, unsupervised, and semi-supervised have worked very hard to harvest this data. The complicated and technological area of feature engineering falls within machine learning. Using deep learning, this tedious process may be completed automatically. Numerous studies have been conducted on deep learning models like LSTM, CNN, RNN, and GRU. Each model has employed a certain type of data, such as CNN for pictures and LSTM for language translation, etc. According to experimental results utilizing a publicly accessible dataset with reviews for all of the models, both positive and negative, and CNN, the best model for the dataset was identified in comparison to the other models, with an accuracy rate of 81%.

Breast Cancer Classification in Ultrasound Images using Semi-supervised method based on Pseudo-labeling

  • Seokmin Han
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.124-131
    • /
    • 2024
  • Breast cancer classification using ultrasound, while widely employed, faces challenges due to its relatively low predictive value arising from significant overlap in characteristics between benign and malignant lesions, as well as operator-dependency. To alleviate these challenges and reduce dependency on radiologist interpretation, the implementation of automatic breast cancer classification in ultrasound image can be helpful. To deal with this problem, we propose a semi-supervised deep learning framework for breast cancer classification. In the proposed method, we could achieve reasonable performance utilizing less than 50% of the training data for supervised learning in comparison to when we utilized a 100% labeled dataset for training. Though it requires more modification, this methodology may be able to alleviate the time-consuming annotation burden on radiologists by reducing the number of annotation, contributing to a more efficient and effective breast cancer detection process in ultrasound images.