References
- J. Linkov, "Who Makes the Most Reliable New Cars?," Consumer Reports, 2022. https://www.consumerreports.org/.
- I. Roldos, "12 Product Review Examples to Get Eyes in 2022," Monkey Learn, 2022. https://monkeylearn.com/blog/product-reviewsexamples/.
- M. Hameed, F. Tahir, and M. A. Shahzad, "Empirical comparison of sentiment analysis techniques for social media," Int. J. Adv. Appl. Sci., vol. 5, no. 4, pp. 115-123, 2018. https://doi.org/10.21833/ijaas.2018.04.015
- N. Archak, A. Ghose, and P. G. Ipeirotis, "Show me the Money ! Deriving the Pricing Power of Product," Proc. 13th ACM SIGKDD Int. Conf. Knowl. Discov. data Min. - KDD '07, pp. 56-65, 2007, doi: 10.1145/1281192.1281202.
- S. Muhammad and F. Masud, "MMO: Multiply-Minus-One Rule for Detecting & Ranking Positive and Negative Opinion," Int. J. Adv. Comput. Sci. Appl., vol. 7, no. 5, pp. 122-127, 2016, doi: 10.14569/IJACSA.2016.070519.
- Y. Chen and J. Xie, "Online Consumer Review: Word-of-Mouth as a New Element of Marketing Communication Mix," Manage. Sci., vol. 54, no. 3, pp. 477-491, 2008, doi: 10.1287/mnsc.1070.0810.
- I. El Alaoui, Y. Gahi, R. Messoussi, Y. Chaabi, A. Todoskoff, and A. Kobi, "A novel adaptable approach for sentiment analysis on big social data," J. Big Data, vol. 5, no. 1, 2018, doi: 10.1186/s40537-018-0120-0.
- D. Grabner, M. Zanker, G. Fliedl, and M. Fuchs, "Classification of Customer Reviews based on Sentiment Analysis," Inf. Commun. Technol. Tour. 2012, pp. 460-470, 2012, doi: 10.1007/978-3-7091-1142-0_40.
- S. M. Saqib, F. M. Kundi, and S. Ahmad, "Unsupervised Learning Method for Sorting Positive and Negative Reviews Using LSI (Latent Semantic Indexing) with Automatic Generated Queries," IJCSNS Int. J. Comput. Sci. Netw. Secur., vol. 18, no. 1, pp. 56-62, 2018.
- Q. Sun, J. Niu, Z. Yao, and H. Yan, "Exploring eWOM in online customer reviews: Sentiment analysis at a fine-grained level," Eng. Appl. Artif. Intell., vol. 81, pp. 68-78, 2019, doi: 10.1016/j.engappai.2019.02.004.
- T. N. Sheikh Muhammad Saqib, Fazal Masud Kundi, Shakeel Ahmad, "Automatic classification of product reviews into interrogative and noninterrogative: Generating real time answer," Int. J. Adv. Appl. Sci., vol. 6, no. 8, pp. 23-31, 2019, doi: 10.21833/ijaas.2019.08.004.
- M. Ahmad, S. Aftab, M. S. Bashir, N. Hameed, I. Ali, and Z. Nawaz, "SVM optimization for sentiment analysis," Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 4, pp. 393-398, 2018, doi: 10.14569/IJACSA.2018.090455.
- M. Abbas, K. Ali Memon, and A. Aleem Jamali, "Multinomial Naive Bayes Classification Model for Sentiment Analysis," IJCSNS Int. J. Comput. Sci. Netw. Secur., vol. 19, no. 3, p. 62, 2019, [Online]. Available: http://paper.ijcsns.org/07_book/201903/20190310.pdf. https://doi.org/10.pdf
- J. Khairnar and M. Kinikar, "Sentiment Analysis Based Mining and Summarizing Using SVM-MapReduce," Int. J. Comput. Sci. Inf. Technol., vol. 5, no. 3, pp. 4081-4085, 2014.
- B. Liu, "Sentiment Analysis and Opinion Mining," Synth. Lect. Hum. Lang. Technol., vol. 5, no. 1, pp. 1-167, 2012, doi: 10.2200/S00416ED1V01Y201204HLT016.
- V. S. D. F. X. Christopher, "Evolving Trends in Conversational Systems with Natural Language Processing," Int. J. Comput. Intell. Informatics, vol. 8, no. 3, pp. 123-129, 2018.
- A. See, "Natural Language Processing with Deep Learning: Natural Language Generation," pp. 1-39, 2019.
- Debasish Kalita, "An Overview on Long Short Term Memory (LSTM)," March 11, 2022, 2022, [Online]. Available: https://www.analyticsvidhya.com/blog/2022/03/an-overview-on-long-short-term-memory-lstm/.
- A. Tsantekidis, N. Passalis, and A. Tefas, "Recurrent neural networks," 2022. doi: 10.1016/B978-0-32-385787-1.00010-5.
- Rahul Awat, "Definition: convolutional neural network," 2022. [Online]. Available: https://www.techtarget.com/searchenterpriseai/definition/convolutional-neural-network.
- S. Kostadinov, "Understanding GRU Networks," 2017. [Online]. Available: https://towardsdatascience.com/understanding-grunetworks-2ef37df6c9be.
- T. Chen, R. Xu, Y. He, and X. Wang, "Improving sentiment analysis via sentence type classification using BiLSTM-CRF and CNN," Expert Syst. Appl., vol. 72, pp. 221-230, 2017, doi: 10.1016/j.eswa.2016.10.065.
- F. Wu, Y. Huang, and Z. Yuan, "Domain-specific sentiment classification via fusing sentiment knowledge from multiple sources," Inf. Fusion, vol. 35, pp. 26-37, 2017, doi: 10.1016/j.inffus.2016.09.001.
- T. Naeem, F. M. Kundi, and S. M. Saqib, "Extracting Words' Polarity With Definition and Examples," Int. J. Comput. Sci. Inf. Secur., vol. 15, no. 2, pp. 180-190, 2017, doi: 10.1036/0071395415.
- wang maoquan, C. Shiyun, X. yufei, and Z. lu, "EICA at SemEval-2017 Task 4: A Simple Convolutional Neural Network for Topic-based Sentiment Classification," Proc. 11th Int. Work. Semant. Eval., pp. 737-740, 2017, [Online]. Available: http://www.aclweb.org/anthology/S17-2124.
- D. Bollegala, T. Mu, and J. Y. Goulermas, "Cross-Domain Sentiment Classification Using Sentiment Sensitive Embeddings," in IEEE Transactions on Knowledge and Data Engineering, 2016, vol. 28, no. 2, pp. 398-410, doi: 10.1109/TKDE.2015.2475761.
- B. Liu, Sentiment Analysis and Opinion Mining, vol. 5, no. 1. 2012.
- J. Jin, P. Ji, and R. Gu, "Identifying comparative customer requirements from product online reviews for competitor analysis," Eng. Appl. Artif. Intell., vol. 49, pp. 61-73, 2016, doi: 10.1016/j.engappai.2015.12.005.
- L. Shu, H. Xu, and B. Liu, "Lifelong Learning CRF for Supervised Aspect Extraction," in Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, 2017, pp. 148-154, doi: 10.18653/v1/P17-2023.
- F. e-M. K. Khan, B.B. Baharudin, A. Khan, "Mining opinion from text documents," Adv. Res. Comput. Commun. Eng., vol. 3, no. 7, pp. 217-222.
- B. Pang and L. Lee, "Opinion mining and sentiment analysis," Found. Trends Inf. Retr., vol. 2, no. 1-2, pp. 1-135, 2008, doi: 10.1561/1500000011.
- M. Z. Asghar, A. Khan, S. Ahmad, and F. M. Kundi, "A Review of Feature Extraction in Sentiment Analysis," J. Basic. Appl. Sci. Res, vol. 4, no. 3, pp. 181-186, 2014.
- S. Wang, D. Li, Y. Wei, and H. Li, "A Feature Selection Method Based on Fisher 's Discriminant Ratio for Text Sentiment Classification Suge," Springer-Verlag Berlin Heidelb., pp. 88-97, 2009.
- A. Esmin and S. Matwin, "Hierarchical Classification Approach to Emotion Recognition in Twitter Hierarchical Classification Approach to Emotion Recognition in Twitter," 2016, no. March, doi: 10.1109/ICMLA.2012.195.
- W. Y. and L. H. A. Wang S, Li D, Song X, "A feature selection method based on improved fisher's discriminant ratio for text sentiment classification," Expert Syst. Appl., vol. 38, no. 7, pp. 8696-8702., 2011. https://doi.org/10.1016/j.eswa.2011.01.077
- L. C. H. and C. H. Chen LS, "A neural network based approach for sentiment classification in the blogosphere.," J. Informetr., vol. 5, no. 2, pp. 313-322, 2011. https://doi.org/10.1016/j.joi.2011.01.003
- F. M. Kundi, A. Khan, S. Ahmad, and M. Z. Asghar, "Lexicon-Based Sentiment Analysis in the Social Web," J. Basic. Appl. Sci. Res, vol. 4, no. 6, pp. 238-248, 2014.
- J. Fiaidhi, O. Mohammed, S. Mohammed, S. Fong, and T. Kim, "Opinion Mining over Twitterspace : Classifying Tweets Programmatically using the R Approach," Digit. Inf. Manag. (ICDIM), Seventh Int. Conf. on. IEEE, pp. 313-319, 2012.
- A. Jeyapriya and C. S. K. Selvi, "Extracting aspects and mining opinions in product reviews using supervised learning algorithm," in 2nd International Conference on Electronics and Communication Systems, ICECS 2015, 2015, pp. 548-552, doi: 10.1109/ECS.2015.7124967.
- M. Z. A. Fazal Masud Kundi, Shakeel Ahmad, Aurangzeb Khan, "Detection and Scoring of Internet Slangs for Sentiment Analysis Using SentiWordNet Fazal," Life Sci. J., vol. 11, no. 1, pp. 66-72, 2014.
- D. K. Kirange, R. R. Deshmukh, and M. D. K. Kirange, "Aspect Based Sentiment analysis SemEval-2014 Task 4," Asian J. Comput. Sci. {&} Inf. Technol., vol. 4, no. 8, pp. 72-75, Aug. 2014, doi: 10.15520/ajcsit.v4i8.9.
- Deepak Kumar Gupta and Asif Ekbal, "Supervised Machine Learning for Aspect based Sentiment Analysis," in Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), 2014, pp. 319-323.
- T. Shaikh and D. Deshpande, "A Review on Opinion Mining and Sentiment Analysis," in IJCA Proceedings on National Conference on Recent Trends in Computer Science and Information Technology, 2016, no. 2, pp. 6-9.
- A. Alghunaim, M. Mohtarami, S. Cyphers, and J. Glass, "A Vector Space Approach for Aspect Based Sentiment Analysis," Proc. NAACL-HLT 2015, pp. 116-122, 2015.
- M. Cuadros, S. Sebastian, G. Rigau, E. H. Unibertsitatea, and S. Sebastian, "V3: Unsupervised Aspect Based Sentiment Analysis for SemEval-2015 Task 12," no. SemEval, pp. 714-718, 2015.
- S. Rosenthal, N. Farra, and P. Nakov, "SemEval-2017 Task 4 : Sentiment Analysis in Twitter," Proc. 11th Int. Work. Semant. Eval., vol. 3, no. 4, pp. 502-518, 2017.
- S. M. Street and B. Liu, "Identifying Noun Product Features that Imply Opinions," Proc. 49th Annu. Meet. Assoc. Comput. Linguist. Hum. Lang. Technol., no. Issue: 2009, pp. 575-580, 2011, [Online]. Available: http://www.aclweb.org/anthology-new/P/P11/P11-2101.pdf.
- S. S. Htay and K. T. Lynn, "Extracting product features and opinion words using pattern knowledge in customer reviews," Sci. World J., 2013, doi: 10.1155/2013/394758.
- H. J. Alyamani, S. Ahmad, A. H. Syed, S. M. Saqib, and Y. D. Al-Otaibi, "LSI Authentication-Based Arabic to English Text Converter," Int. J. Fuzzy Log. Intell. Syst., vol. 21, no. 4, pp. 409-422, 2021, doi: 10.5391/IJFIS.2021.21.4.409.
- A. O. Shakeel Ahmad, Sheikh Muhammad Saqib, "LSI Based Search Technique: Using Extracted Keywords and Key Sentences," VAWKUM Trans. Comput. Sci., vol. 14, no. 2, pp. 1-8, 2017. https://doi.org/10.21015/vtcs.v14i2.471
- S. M. Saqib and F. M. Kundi, "Semi Supervised Method for Detection of Ambiguous Word and Creation of Sense : Using WordNet," vol. 9, no. 11, pp. 353-359, 2018. https://doi.org/10.14569/IJACSA.2018.091149
- L. Zhuang, F. Jing, and X.-Y. Zhu, "Movie review mining and summarization," in Proceedings of the 15th ACM international conference on Information and knowledge management - CIKM '06, 2006, pp. 43-50, doi: 10.1145/1183614.1183625.
- S. Gojali and M. L. Khodra, "Aspect based sentiment analysis for review rating prediction," 2016, doi: 10.1109/ICAICTA.2016.7803110.
- N. C. Dang, M. N. Moreno-Garcia, and F. De la Prieta, "Sentiment analysis based on deep learning: A comparative study," Electron., vol. 9, no. 3, 2020, doi: 10.3390/electronics9030483.
- P. Cen, K. Zhang, and D. Zheng, "Sentiment Analysis Using Deep Learning Approach," J. Artif. Intell., vol. 2, no. 1, pp. 17-27, 2020, doi: 10.32604/jai.2020.010132.
- S. M. Saqib, S. Ahmad, A. H. Syed, T. Naeem, and F. M. Alotaibi, "Grouping of Aspects into Relevant Category Based on WordNet Definitions," vol. 19, no. 2, pp. 113-119, 2019.
- K. Dashtipour, M. Gogate, A. Adeel, H. Larijani, and A. Hussain, "Sentiment analysis of persian movie reviews using deep learning," Entropy, vol. 23, no. 5, pp. 1-16, 2021, doi: 10.3390/e23050596.
- L. Zhang, S. Wang, and B. Liu, "Deep learning for sentiment analysis: A survey," Wiley Interdiscip. Rev. Data Min. Knowl. Discov., vol. 8, no. 4, 2018, doi: 10.1002/widm.1253.
- R. Johnson and T. Zhang, "Effective use of word order for text categorization with convolutional neural networks," NAACL HLT 2015 - 2015 Conf. North Am. Chapter Assoc. Comput. Linguist. Hum. Lang. Technol. Proc. Conf., no. 2011, pp. 103-112, 2015, doi: 10.3115/v1/n15-1011.
- Y. Zhang and B. Wallace, "A Sensitivity Analysis of (and Practitioners' Guide to) Convolutional Neural Networks for Sentence Classification," in Pro_ceedings of the 8th International Joint Conference on Natural Language Processing, 2017, p. 253263, [Online]. Available: http://arxiv.org/abs/1510.03820.
- S. Zhao, Z. Xu, L. Liu, M. Guo, and J. Yun, "Towards Accurate Deceptive Opinions Detection based on Word Order-preserving CNN," Available Online: http://arxiv.org/abs/1711.09181, pp. 1-8, 2018.
- X. Wang, Y. Liu, C. Sun, B. Wang, and X. Wang, "Predicting polarities of tweets by composing word embeddings with long short-Term memory," ACL-IJCNLP 2015 - 53rd Annu. Meet. Assoc. Comput. Linguist. 7th Int. Jt. Conf. Nat. Lang. Process. Asian Fed. Nat. Lang. Process. Proc. Conf., vol. 1, pp. 1343-1353, 2015, doi: 10.3115/v1/p15-1130.
- D. Tang, B. Qin, and T. Liu, "Document modeling with gated recurrent neural network for sentiment classification," Conf. Proc. - EMNLP 2015 Conf. Empir. Methods Nat. Lang. Process., no. September, pp. 1422-1432, 2015, doi: 10.18653/v1/d15-1167.
- "https://www.kaggle.com/yelp-dataset/yelp-dataset." .
- A. Kulkarni, "Confusion Matrix Confusion matrix is a very popular measure used while solving classification problems.," Data Democracy, Elviewer, 2020. https://www.sciencedirect.com/topics/engineering/confusion-matrix#:~:text=A confusion matrix is a,malignant tissue is considered cancerous.