• Title/Summary/Keyword: Supercritical CO2

Search Result 125, Processing Time 0.026 seconds

Numerical Analysis of Flow Characteristics in an Injection Tubing during Supercritical CO2 Injection: Application of Demonstration-scale CO2 Storage Project in the Pohang Basin, Korea (초임계 상태의 CO2 주입시 주입관내 유동 특성의 수치해석적 연구: 포항분지 중소규모 CO2 지중저장 실증 사업에 적용)

  • Jung, Woodong;Sung, Wonmo;Han, Jeongmin;Song, Youngsoo;Wang, Jihoon
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.4
    • /
    • pp.9-17
    • /
    • 2022
  • This paper is the continuation of our previous paper, which we refer to as numerical analysis of phase behavior and flow properties in an injection tubing during gas phase CO2 injection. Our study in this paper show the results during supercritcal CO2 injection under the same project. Geological CO2 storage technology is one of the most effective method to decrease climate change due to high injectivity and storage capacity and economics. A demonstration-scale CO2 storage project was performed in a deep aquifer in the Pohang basin, Korea for a technological development in a large-scale CO2 storage project. A problem to consider in the early stage design of the project was to analyze CO2 phase change and flow characteristics during CO2 injection. To solve this problem, injection conditions were decided by calculating injection rate, pressure, temperature, and thermodynamic properties. For this research, we simulated and numerically analyzed CO2 phase change from liquid to supercritical phase and flow characteristics in injection tubing using OLGA program. Our results provide discharge pressure and temperature conditions of CO2 injection combined with a pressure of an aquifer.

Development of Pump-Drive Turbine with Hydrostatic Bearing for Supercritical CO2 Power Cycle Application (정압 베어링을 적용한 초임계 CO2 발전용 펌프-구동 터빈 개발)

  • Lee, Donghyun;Kim, Byungock;Park, Mooryong;Yoon, Euisoo
    • Tribology and Lubricants
    • /
    • v.36 no.3
    • /
    • pp.153-160
    • /
    • 2020
  • In this paper, we present a hydrostatic bearing design and rotordynamic analysis of a pump-and-drive turbine module for a 250-kW supercritical CO2 cycle application. The pump-and-drive turbine module consists of the pump and turbine wheel, assembled to a shaft supported by two hydrostatic radial and thrust bearings. The rated speed is 21,000 rpm and the rated power is 143 kW. For the bearing operation, we use high-pressure CO2 as the lubricant, which is supplied to the bearing through the orifice restrictor. We calculate the bearing stiffness and flow rate for various orifice diameters, and then select the diameter that provides the maximum bearing stiffness. We also conduct a rotordynamic analysis based on the design parameters of the pump-and-drive turbine module. The predicted Campbell diagram shows that there is no critical speed below the rated speed, owing to the high stiffness of the bearings. Furthermore, the predicted damping ratio indicates that there is no unstable mode. We conduct the operating tests for the pump and drive turbine modules within the supercritical CO2 cycle test loop. The pressurized CO2, at a temperature of 136℃, is supplied to the turbine and we monitor the shaft vibration during the test. The test results show that there is no critical speed below the rated speed, and the shaft vibration is controlled to below 3 ㎛.

Effects of Supercritical CO2 Treatment on Color, Lipid Oxidation, Heme Iron, Non-Heme Iron and Metmyoglobin Contents in Ground Pork

  • Shirong Huang;Min Tang;Fenfen Chen;Shengnan Zhao;Dongfang Chen
    • Food Science of Animal Resources
    • /
    • v.44 no.2
    • /
    • pp.408-429
    • /
    • 2024
  • The color, lipid oxidation, heme iron (HI) and non-heme iron (NHI) contents, metmyoglobin content and Soret band of myoglobin of ground pork subjected to supercritical CO2 treatment under different conditions, or to heat treatment (40℃, 2 h) and subsequent storage at 4℃ were evaluated during 9-day period. Supercritical CO2 treatment significantly increased CIE L* and CIE b* values of ground pork during subsequent storage, while the HI content was slightly affected. In general, CIE a* value and metmyoglobin content were decreased. Supercritical CO2 treatment for 2 h could increase the thiobarbituric acid-reactive substances (TBARS) value, while treatment for 1 h or less had no effect. The NHI content could be increased only after treatment at above 40℃ or 17.2 MPa for 2 h. The Soret band of myoglobin was shifted to longer wavelength. Increasing treatment temperature from 35℃ to 45℃ could increase CIE L*, CIE a*, CIE b* and TBARS values, HI and NHI contents of the ground pork, while decreasing metmyoglobin content. As the treatment pressure increased from 13.8 MPa to 20.7 MPa, CIE b* and TBARS values were decreased, while the NHI and metmyoglobin contents were increased. However, the other parameters were unchanged. Extending exposure time from 0.5 h to 2 h could increase CIE L*, CIE b* and TBARS values, HI contents, while decreasing CIE a* value and metmyoglobin content. Correlation analysis showed that the TBARS value was significantly and negatively correlated with the HI content or metmyoglobin content in samples treated at 40℃ or above for 2 h.

Effect of Added Supercritical CO2 on the Characteristics of Copper Electroless Plating on PET Film Substrate (PET 필름기재의 구리 무전해도금에 있어서 초임계 CO2 유체가 도금 특성에 미치는 영향)

  • Lee, Hee-Dai;Kim, Moon-Sun;Kim, Chul kyung
    • Korean Chemical Engineering Research
    • /
    • v.45 no.4
    • /
    • pp.384-390
    • /
    • 2007
  • In this study, electroless plating of copper was performed on PET film by using the blend of supercritical $CO_2$ and plating solution. The optimum volumetric ratio of supercritical fluid and plating solution was found to be 1:9 and dispersion property was poor at $CO_2$ vol% langer than 10%. Electroless plating of copper was best at $25^{\circ}C$ and 15 MPa. Role of added supercritical $CO_2$ is not to increase solubility but to disperse and maintain Cu-particles as the 1st particles.

Characteristics of Extraction of Daidzein and Genistein in Soybean Using Sub/Supercritical Fluids (아임계/초임계 유체를 이용한 콩에 포함된 Daidzein과 Genistein의 추출특성)

  • Choi, Du Young;Zheng, Jinzhu;Row, Kyung Ho
    • Applied Chemistry for Engineering
    • /
    • v.16 no.5
    • /
    • pp.609-613
    • /
    • 2005
  • Daidzein and genistein were extracted from Korean soybean by supercritical $CO_2$ and sub/supercritical water. The extracted sample was analyzed by reversed-phase high performance liquid chromatography (RP-HPLC). The retention time, retention factor, column efficiency, column selectivity and resolution of aglycons were compared with the change in the temperature and pressure of supercritical fluid and ethanol concentration. The characteristics of extraction of daidzein and genistein were more affected by ethanol concentration using supercritical $CO_2$. The most desirable extraction yield was obtained by supercritical $H_2O$ with $400^{\circ}C$ and 250 bar. Generally, the extraction yield of aglycons increased over 10 times using supercritical $CO_2$ than sub/supercritical $H_2O$.

Physicochemical properties of supercritical carbon dioxide defatted mealworm (Tenebrio molitor) powder and protein isolate (초임계이산화탄소 탈지 밀웜(Tenebrio molitor) 분말 및 분리단백의 이화학적 품질 특성)

  • Kim, Yangji;Kim, Seok Joong
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.5
    • /
    • pp.516-523
    • /
    • 2020
  • Supercritical carbon dioxide (SCO2) extraction was applied for the defatting of mealworm to prepare defatted powder (DP) and protein isolate (PI) and compare the process to press and hexane extraction, with respect to DP and PI physicochemical properties. SCO2 DP was obtained by extracting 34.40% oil at 41.37 MPa, 40℃ for 180 min, and the product contained 71.66% crude protein, which is similar to that of hexane DP and higher than that of press DP. In using alkali protein extraction to prepare PI from DP, SCO2 was as effective as hexane and better than press. SCO2 produced brighter DP and PI than press, but not as much as hexane. Protein solubility was similar in all DP, with minimum values at pH 5. The highest water adsorption capacity was noticeable for SCO2 PI, and SCO2 DP showed an oil adsorption capacity comparable to that of hexane DP. SCO2 DP and PI had better foaming capacity than press DP and PI and showed superior emulsion activity compared to others.

The Technology Development Trends of Supercritical CO2 Power Generation (초임계 CO2 발전 기술개발 동향)

  • Kim, Beom-Ju
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.4
    • /
    • pp.531-536
    • /
    • 2016
  • The worldwide research and development for high-efficiency power generation system is progressing steadily because of the growing demand for reducing greenhouse gas emissions. Many countries have spurred the research and development of supercritical $CO_2$ power generation technology since 2000 because it has the advantage of compactness, efficiency, and diversity. Supercritical $CO_2$ power generation system can be classified into an indirect heating type and a direct heating type. As of now, most studies have concentrated on the development of indirect type supercritical $CO_2$ power generation system. In the United States, NREL(National Renewable Energy Lab.) is developing supercritical $CO_2$ power generation system for Concentrating Solar Power. In addition, U.S. DOE(Department of Energy) also plans to start investing in the development of the supercritical $CO_2$ power generation system for coal-fired thermal power plant this year. GE is developing not only 10MW supercritical $CO_2$ power generation turbomachinery but also the conceptual design of 50MW and 450MW supercritical $CO_2$ power generation turbomachinery. In Korea, the Korean Atomic Energy Research Institute has constructed the supercritical $CO_2$ power generation test facility. Moreover, KEPRI(Korea Electric Power Research Institute) is developing a 2MW-class supercritical $CO_2$ power generation system using diesel and gas engine waste heat with Hyundai Heavy Industries.

The Removal of Si3N4 Particles from the Wafer Surface Using Supercritical Carbon Dioxide Cleaning (웨이퍼 표면의 Si3N4 파티클 제거를 위한 초임계 이산화탄소 세정)

  • Kim, Yong Hun;Choi, Hae Won;Kang, Ki Moon;Karakin, Anton;Lim, Kwon Teak
    • Clean Technology
    • /
    • v.24 no.3
    • /
    • pp.157-165
    • /
    • 2018
  • In this study, the removal of $Si_3N_4$ particles from the surface of a silicon wafer was investigated by using supercritical carbon dioxide, the IPA co-solvent and cleaning additive chemicals. First, the solubility of several surfactants and binders in supercritical carbon dioxide solubility and particle dispersibility in the binders were evaluated in order to confirm their suitability for the supercritical cleaning process. Particle removal experiments were carried out with adjusting various process parameters and reaction conditions. The surfactants used in the experiment showed little particle removal effect, producing secondary contamination on the surface of wafers. On the other hand, 5 wt% (with respect to $scCO_2$) of the cleaning additive mixture of trimethyl phosphate, IPA, and trace HF resulted in 85% of particle removal efficiency after $scCO_2$ flowing for 4 minutes at $50^{\circ}C$, 2000 psi, and the flow rate of $15mL\;min^{-1}$.

Experimental study on heat transfer characteristics of supercritical carbon dioxide natural circulation

  • Wang, Pengfei;Ding, Peng;Li, Wenhuai;Xie, Rongshun;Duan, Chengjie;Hong, Gang;Zhang, Yaoli
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.867-876
    • /
    • 2022
  • An experimental study has been conducted to investigate the heat transfer characteristics of supercritical carbon dioxide (sCO2) uniformly heated in the horizontal circular smooth tube. The results illustrated that there was a significant difference in heat transfer between the top wall and bottom wall due to the buoyancy. Bulk flow acceleration cannot be negligible in the high heat flux region, which leads to heat transfer deterioration. A new heat transfer correlation is proposed, in which the buoyancy parameter and bulk flow acceleration have been taken into account. The new correlation and six classic correlations for sCO2 are examined in horizontal tubes. The comparison indicates that the new correlation has a better performance for sCO2 flowing through a horizontal heating tube under natural circulation conditions. For example, 94.9% of the calculated results using the new heat transfer correlation were within ±30% of the experimental results while only 87.9% of that using the Jackson correlation (the best of the six) were within the same error bands.