References
- Y.M. Li, J.S. Liaw, C.C. Wang, A criterion of heat transfer deterioration for supercritical organic fluids flowing upward and its heat transfer correlation, Energies 13 (2020), https://doi.org/10.3390/en13040989.
- D.E. Kim, M.H. Kim, Experimental investigation of heat transfer in vertical upward and downward supercritical CO2 flow in a circular tube, Int. J. Heat Fluid Flow 32 (2011) 176-191, https://doi.org/10.1016/j.ijheatfluidflow.2010.09.001.
- Y.Y. Bae, H.Y. Kim, D.J. Kang, Forced and mixed convection heat transfer to supercritical CO2 vertically flowing in a uniformly-heated circular tube, Exp. Therm. Fluid Sci. 34 (2010) 1295-1308, https://doi.org/10.1016/j.expthermflusci.2010.06.001.
- D.E. Kim, M.H. Kim, Two layer heat transfer model for supercritical fluid flow in a vertical tube, J. Supercrit. Fluids 58 (2011) 15-25, https://doi.org/10.1016/j.supflu.2011.04.014.
- Y. Huang, S. Liu, G. Liu, J. Wang, Y. Zan, X. Lang, Evaluation and analysis of forced convection heat transfer correlations for supercritical carbon dioxide in tubes, Nucl. Power Eng. 37 (2016) 28-33, https://doi.org/10.13832/j.jnpe.2016.01.0028.
- S. Liu, Y. Huang, Evaluation and analysis of forced convection heat transfer correlations for supercritical carbon dioxide in vertical tubes, in: H. Jiang (Ed.), Proc. 20th Pacific Basin Nucl. Conf., Singapore: Springer Singapore, 2017, pp. 753-768.
- S. Zhang, X. Xu, C. Liu, X. Liu, C. Dang, Experimental investigation on the heat transfer characteristics of supercritical CO2 at various mass flow rates in heated vertical-flow tube, Appl. Therm. Eng. (2019), https://doi.org/10.1016/j.applthermaleng.2019.04.097.
- H. Zhang, J. Xu, X. Zhu, J. Xie, M. Li, B. Zhu, The K number, a new analogy criterion number to connect pressure drop and heat transfer of sCO2 in vertical tubes, Appl. Therm. Eng. 182 (2021) 116078, https://doi.org/10.1016/j.applthermaleng.2020.116078.
- S.M. Liao, T.S. Zhao, An experimental investigation of convection heat transfer to supercritical carbon dioxide in miniature tubes, Int. J. Heat Mass Tran. 45 (2002) 5025-5034, https://doi.org/10.1016/S0017-9310(02)00206-5.
- K. Tanimizu, R. Sadr, Experimental investigation of buoyancy effects on convection heat transfer of supercritical CO2 flow in a horizontal tube, Heat Mass Transf Und Stoffuebertragung 52 (2016) 713-726, https://doi.org/10.1007/s00231-015-1580-9.
- J. Wang, Z. Guan, H. Gurgenci, K. Hooman, A. Veeraragavan, X. Kang, Computational investigations of heat transfer to supercritical CO2 in a large horizontal tube, Energy Convers. Manag. 157 (2018) 536-548, https://doi.org/10.1016/j.enconman.2017.12.046.
- G.A. Adebiyi, W.B. Hall, Experimental investigation of heat transfer to supercritical pressure carbon dioxide in a horizontal pipe, Int. J. Heat Mass Tran. 19 (1976) 715-720, https://doi.org/10.1016/0017-9310(76)90123-X.
- Z. Zhao, B. Yuan, W. Du, Assessment and modification of buoyancy criteria for supercritical pressure CO2 convection heat transfer in a horizontal tube, Appl. Therm. Eng. 169 (2020) 114808, https://doi.org/10.1016/j.applthermaleng.2019.114808.
- E.W. Lemmon, M. Huber, M.O. Mclinden, E.W. Lemmon, M.L. Huber, O.M. Mclinden, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties REFPROP 9.1.[DS], NIST NSRDS, 2010.
- T.H. Kim, J.G. Kwon, M.H. Kim, H.S. Park, Experimental investigation on validity of buoyancy parameters to heat transfer of CO2 at supercritical pressures in a horizontal tube, Exp. Therm. Fluid Sci. 92 (2018) 222-230, https://doi.org/10.1016/j.expthermflusci.2017.11.024.
- V. Nieolinski, New equations for heat mass transfer in turbulent pipe and channel flows, Int. Chem. Eng. 16 (1976) 359-368.
- R.J. Moffat, Describing the uncertainties in experimental results, Exp. Therm. Fluid Sci. 1 (1988) 3-17, https://doi.org/10.1016/0894-1777(88)90043-X.
- J.D. Jackson, Fluid flow and convective heat transfer to fluids at supercritical pressure, Nucl. Eng. Des. 264 (2013) 24-40, https://doi.org/10.1016/j.nucengdes.2012.09.040.
- D.M. McEligot, J.D. Jackson, "Deterioration" criteria for convective heat transfer in gas flow through non-circular ducts, Nucl. Eng. Des. 232 (2004) 327-333, https://doi.org/10.1016/j.nucengdes.2004.05.004.
- D.E. Kim, M.H. Kim, Experimental study of the effects of flow acceleration and buoyancy on heat transfer in a supercritical fluid flow in a circular tube, Nucl. Eng. Des. 240 (2010) 3336-3349, https://doi.org/10.1016/j.nucengdes.2010.07.002.
- F.W. Dittus, L.M.K. Boelter, Heat transfer in automobile radiators of the tubular type, Int. Commun. Heat Mass Tran. 12 (1985) 3-22, https://doi.org/10.1016/0735-1933(85)90003-X.
- V.A. Kurganov, Y.A. Zeigarnik, I.V. Maslakova, Heat transfer and hydraulic resistance of supercritical pressure coolants. Part III: generalized description of SCP fluids normal heat transfer, empirical calculating correlations, integral method of theoretical calculations, Int. J. Heat Mass Tran. 67 (2013) 535-547, https://doi.org/10.1016/j.ijheatmasstransfer.2013.07.056.
- J.D. Jackson, An semi-empirical model of turbulent convective heat transfer to fluids at supercritical pressure, in: Proc. 16th Int. Conf. Nucl. Eng vol. 3, 2008, pp. 911-921, https://doi.org/10.1115/ICONE16-48914. Orlando, Florida, USA.
- H. Li, A. Kruizenga, M. Anderson, M. Corradini, Y. Luo, H. Wang, et al., Development of a new forced convection heat transfer correlation for CO2 in both heating and cooling modes at supercritical pressures, Int. J. Therm. Sci. 50 (2011) 2430-2442, https://doi.org/10.1016/j.ijthermalsci.2011.07.004.