• Title/Summary/Keyword: Super cooling

Search Result 92, Processing Time 0.025 seconds

Long-term Preservation of Bombyx mori Stocks by Frozen Gonad Storage (생식소 동결에 의한 누에 유전자원의 장기보존)

  • Kim, Sam-Eun;Seong, Su-Il;Lee, Sang-Mong
    • Journal of Sericultural and Entomological Science
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 1992
  • For a long-term preservation of silkworm stocks by frozen gonad storage, fundamental topics such as freezing rate and transplanting stage of the gonad, proper cryoprotectant, and super-cooling temperature and freezing point of the freezing medium were examined and following results were obtained. Proper method to anesthetize the ovary-recipient silkworm was to dip the animal to cold water for 10 minutes, and the ovary taken from the 4th instar larvae was more suitable for freezing-preservation than that from the 5th. Concerning the cryoprotectant, glycerol and DMSO were effective to prevent cryoinjury of the ovary, but sorbitol was not. The supercooling temperature and freezing point of the medium to freeze the ovary and testes were checked, and consulting with the results desirable cooling rate was confirmed. On the desirable conditions of transplanting methods, freezing rate and cryoprotectant concentration ect., the next generation was obtained when the females implanted frozen-thawed ovaries mated with normal males, but none of the normal females mated with the males implanted frozen-thawed testes laid fertilized eggs. Now it is needed to improve the connecting ration of the ducts associated with the transplanted testis to those of the hosts.

  • PDF

Study on the performance characteristics of a new CO2 auto-cascade heat pump system (새로운 CO2 오토 캐스케이드 열펌프 시스템의 성능특성 연구)

  • Yun, Sang-Kook
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.191-196
    • /
    • 2017
  • Owing to the harmful environmental effects of HCFC and CFC refrigerants discovered in the late 20th century, the need for environmentally friendly refrigerants such as $CO_2$ in cooling systems has increased. Air-source $CO_2$ heat pumps that utilize ambient heat in cold winter are less efficient because of a higher evaporation temperature, and it is difficult to manufacture the components of the heat pump owing to a super critical pressure of over 130 bar. This research aims to overcome these disadvantages and improve energy efficiency by introducing a new lower-pressure $CO_2$ auto-cascade heat pump system. $CO_2$-R32 zeotropic refrigerants were considered for two-stage expansion and effective cooling heat exchanging system configurations of the new auto-cascade heat pump. The results indicated that the efficiency of the two-stage expansion system was higher than that of the original one-stage expansion system. Furthermore, the two-stage expansion system showed significant performance improvements when the two-stage expansion stage from highest pressure of 70bar, intermediate expansion pressure of 25bar, and final low pressure of 10bar is applied. The COP of the new two-stage auto-cascade system (2.332) was 43.15% higher than that of the present simple auto-cascade system (1.629). Refrigerants having an evaporation temperature of $-10^{\circ}C$ or lower can be obtained that can be easily evaporated in an evaporator even at a low temperature.

Sand particle-Induced deterioration of thermal barrier coatings on gas turbine blades

  • Murugan, Muthuvel;Ghoshal, Anindya;Walock, Michael J.;Barnett, Blake B.;Pepi, Marc S.;Kerner, Kevin A.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.1
    • /
    • pp.37-52
    • /
    • 2017
  • Gas turbines operating in dusty or sandy environment polluted with micron-sized solid particles are highly prone to blade surface erosion damage in compressor stages and molten sand attack in the hot-sections of turbine stages. Commercial/Military fixed-wing aircraft engines and helicopter engines often have to operate over sandy terrains in the middle eastern countries or in volcanic zones; on the other hand gas turbines in marine applications are subjected to salt spray, while the coal-burning industrial power generation turbines are subjected to fly-ash. The presence of solid particles in the working fluid medium has an adverse effect on the durability of these engines as well as performance. Typical turbine blade damages include blade coating wear, sand glazing, Calcia-Magnesia-Alumina-Silicate (CMAS) attack, oxidation, plugged cooling holes, all of which can cause rapid performance deterioration including loss of aircraft. The focus of this research work is to simulate particle-surface kinetic interaction on typical turbomachinery material targets using non-linear dynamic impact analysis. The objective of this research is to understand the interfacial kinetic behaviors that can provide insights into the physics of particle interactions and to enable leap ahead technologies in material choices and to develop sand-phobic thermal barrier coatings for turbine blades. This paper outlines the research efforts at the U.S Army Research Laboratory to come up with novel turbine blade multifunctional protective coatings that are sand-phobic, sand impact wear resistant, as well as have very low thermal conductivity for improved performance of future gas turbine engines. The research scope includes development of protective coatings for both nickel-based super alloys and ceramic matrix composites.

STUDY ON THE PREVENTION METHOD FOR HEAT ACCUMULATION FOR PERSONAL RAPID TRANSIT (PRT) VEHICLE UNDER BODY (PRT 차량하부 열부하 저감방안 도출 연구)

  • Kwon, S.B.;Song, J.H.;Kang, S.W.;Jeong, R.G.;Kim, H.B.;Lee, C.H.;Seo, D.K.
    • Journal of computational fluids engineering
    • /
    • v.18 no.1
    • /
    • pp.58-62
    • /
    • 2013
  • Personal Rapid Transit (PRT) is the emerging personal transport vehicle operating on the loop automatically. The PRT system utilize the electrical power from super capacity or battery, it is important to manage the power or energy. In this regards, the management of high temperature occurred by the operation of system is significantly important to prevent from serious damage of component. In this study, we studied the adequate shape of underbody which can reduce the heat accumulation by pickup coil and condenser using natural air cooling. We suggested the additional air pathway, air inlet and flow separator to decrease the temperature of the heat source components. It was found that suggested system can decrease the temperature of PRT under body by 16% during the static mode and by 10% during the running mode at 30km/h. It is expected that the findings of this study will feed into final design of newly built Korean PRT vehicle.

Materials Integrity Analysis for Application of Hyper Duplex Stainless Steels to Korean Nuclear Power Plants

  • Chang, Hyun-Young;Park, Heung-Bae;Park, Yong-Soo;Kim, Soon-Tae;Kim, Young-Sik;Kim, Kwang-Tae;Jhang, Yoon-Young
    • Corrosion Science and Technology
    • /
    • v.9 no.5
    • /
    • pp.187-195
    • /
    • 2010
  • Hyper duplex stainless steels have been developed in Korea for the purpose of application to the seawater system of Korean nuclear power plants. This system supplies seawater to cooling water heat exchanger tubes, related pipes and chlorine injection system. In normal operation, seawater is supplied to heat exchanger through the exit of circulating water pump headers, and the heat exchanged sea water is extracted to the discharge pipes in circulating water system connected to the circulating water discharge lines. The high flow velocity of some part of seawater system in nuclear power plants accelerates damages of components. Therefore, high strength and high corrosion resistant steels need to be applied for this environment. Hyper duplex stainless steel (27Cr-7.0Ni-2.5Mo-3.2W-0.35N) has been newly developed in Korea and is being improved for applying to nuclear power plants. In this study, the physical & mechanical properties and corrosion resistance of newly developed materials are quantitatively evaluated in comparative to commercial stainless steels in other countries. The properties of weld & HAZ (heat affected zone) are analyzed and the best compositions are suggested. The optimum conditions in welding process are derived for ensuring the volume fraction of ferrite(${\alpha}$) and austenite(${\gamma}$) in HAZ and controlling weld cracks. For applying these materials to the seawater heat exchanger, CCT and CPT in weldments are measured. As a result of all experiments, it was found that the newly developed hyper duplex stainless steel WREMBA has higher corrosion resistance and mechanical properties than those of super austenitic stainless steels including welded area. It is expected to be a promising material for seawater systems of Korean nuclear power plants.

Development and Demonstration of 150W Fuel Cell Propulsion System for Unmanned Aerial Vehicle (UAV) (무인항공기용 150W급 연료전지 동력원 개발 및 실증)

  • Yang, Cheol-Nam;Kim, Yang-Do
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.4
    • /
    • pp.300-309
    • /
    • 2012
  • Long endurance is a key issue in the application of unmanned aerial vehicles. This study presents feasibility test results when fuel cell system as an alternative to the conventional engine is applied for the power of the UAV after the 150W fuel cell system is developed and packaged to the 1/4 scale super cub airplane. Fuel cell system is operated by dead-end method in the anode part and periodically purged to remove the water droplet in flow field during the operation. Oxygen in the air is supplied to the stack by the two air blowers. And fuel cell stack is water cooled by cooling circuit to dissipate the heat generated during the fuel cell operation. Weight balance is considered to integrate the stack and balance of plant (BOP) in package layout. In flight performance test, we demonstrated 4 times standalone take-off and landing. In the laboratory test simulating the flight condition to quantify the energy flow, the system is analyzed in detail. Sankey diagram shows that electric efficiency of the fuel cell system is 39.2%, heat loss 50.1%, parasitic loss 8.96%, and unreacted purged gas 1.67%, respectively compared to the total hydrogen input energy. Feasibility test results show that fuel cell system is high efficient and appropriate for the power of UAV.

The Crystal Growth of $Bi_{12}GeO_{20}$ Single Crystal by the CZ Technique with New Weighing Sensor (II) (새로운 무게센서에 의한 $Bi_{12}GeO_{20}$ 단결정 육성연구(II))

  • 장영남;배인국
    • Korean Journal of Crystallography
    • /
    • v.9 no.1
    • /
    • pp.30-38
    • /
    • 1998
  • A new frequency weighing sensor was applied to grow Bi12GeO20 crystals in the auto-di-ameter control system of Czochralski method. The rotation rate was varied in the range of 23 to 21 rpm to preserve flat interface in a given heat configuration. To prevent the constitutional super-cooling from the evaporation loss, 105% stoichiometric amount of Bi2O3 was employed, equivalent to 6.18 molar ratio of Bi2O3 to GeO2. Transparent and light brown Bi12GeO20 single crystal in uniform diameter was grown. The dislocation density was determined to be 103/cm2 corresponding to the optical quality in commercial applications. The grown crystal measured diameter 25 mm and length 70 mm and the preferred growth direction was confirmed to be <110>.

  • PDF

Horizon Run Spin-off Simulations for Studying the Formation and Expansion history of Early Universe

  • Kim, Yonghwi;Park, Jaehong;Park, Changbom;Kim, Juhan;Singh, Ankit;Lee, Jaehyun;Shin, Jihye
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.45.1-45.1
    • /
    • 2021
  • Horizon Run 5 (HR5) is a cosmological hydrodynamical simulation which captures the properties of the Universe on aGpc scale while achieving a resolution of 1kpc. This enormous dynamic range allows us to simultaneously capture the physics of the cosmic web on very large scales and account for the formation and evolution of dwarf galaxies on much smaller scales. On the back of a remarkable achievement of this, we have finished to run follow-up simulations which have 2 times larger volume than before and are expected to complementary to some limitations of previous HR simulations both for the study on the large scale features and the expansion history in a distant Universe. For these simulations, we consider the sub-grid physics of radiative heating/cooling, reionization, star formation, SN/AGN feedbacks, chemical evolution and the growth of super-massive blackholes. In order to do this project, we implemented a hybrid MPI-OpenMP version of the RAMSES code, 'RAMSES-OMP', which is specifically designed for modern many-core many thread parallel systems. These simulation successfully reproduce various observation result and provide a large amount of statistical samples of Lyman-alpha emitters and protoclusters which are important to understand the formation and expansion history of early universe. These are invaluable assets for the interpretation of current ΛCDM cosmology and current/upcoming deep surveys of the Universe, such as the world largest narrow band imaging survey, ODIN (One-hundred-square-degree Dark energy camera Imaging in Narrow band).

  • PDF

Evaluation of cryogenic mechanical properties of aluminum alloy using small punch test

  • Hojun Cha;Seungmin Jeon;Donghyeon Yoon;Jisung Yoo;Seunggun Lee;Seokho Kim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.4
    • /
    • pp.70-74
    • /
    • 2023
  • The Small Punch Test (SPT) was developed to evaluate the softening and embrittlement of materials such as power plants and nuclear fusion reactors by taking samples in the field. Specimens used in the SPT are very thin and small disk-shaped compared to specimens for general tensile test, and thus have economic advantages in terms of miniaturization and repeatability of the test. The cryogenic SPT can also be miniaturized and has a significantly lower heat capacity than conventional universal test machines. This leads to reduced cooling and warm-up times. In this study, the cryogenic SPT was developed by modifying the existing room temperature SPT to be cooled by liquid nitrogen using a super bellows and a thermal insulation structure. Since the cryogenic SPT was first developed, basic experiments were conducted to verify the effectiveness of it. For the validation, aluminum alloy 6061- T6 specimens were tested for mechanical properties at room and cryogenic temperature. The results of the corrected tensile properties from the SPT experiment results were compared with known room temperature and cryogenic properties. Based on the correction results, the effectiveness of the cryogenic SPT test was confirmed, and the surface fracture characteristics of the material were analyzed using a 3d image scanner. In the future, we plan to conduct property evaluation according to the development of various alloy materials.

Flow Measurement and Characteristic Analysis in the Effluent Regions of the Samcheonpo Thermal Power Plant(TPP) (삼천포 화력발전소 방류수로 및 방류해역의 흐름 관측 및 특성분석)

  • Cho, Hong-Yeon;Jeong, Shin-Taek;Kang, Keum-Seok
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.4
    • /
    • pp.329-337
    • /
    • 2006
  • A small hydro-power plant operated by cooling water discharged from the power plant is under construction. In this study, the flow characteristics of the effluent channel and the outfall coastal zone in which the facilities are constructed have been measured and analysed. The flow pattern is highly dependent on the effluent discharge and clearly classified as these typical areas; the upstream and downstream areas of the weir, and the outfall coastal zone. The discharge and the width of the channel in the upstream area of the weir are increased step by step, so the water level fluctuation is small. The flow overtopping the weir is rapidly changing and has highly vertical fluctuation patterns after hydraulic jump just below the weir. The flow pattern in the outfall zone is directed toward the seaward direction and the velocity is dominated by the tidal level fluctuation. The mean tidal range in this area is about 10% greater than that of the Tongyeong tidal gauging station and the wave effects are negligible because of the sheltering effects of this area.