표본기반 초해상도(Super Resolution 이하 SR) 기법은 데이터베이스에 저장된 고해상도 영상의 패치와 저해상도 영상의 패치 사이에 대응관계를 이용하여, 저해상도의 입력영상에 가장 유사한 고해상도 패치를 덧붙여서 고해상도를 구성하는 방식이다. 이러한 방식은 한 장의 영상만으로 고해상도 영상을 얻을 수 있고, 위의 과정을 반복하여 2배 이상의 확대된 영상을 얻을 수 있어서 기존의 고전적 SR의 문제점을 해결할 수 있다. 표본기반 SR의 방법들 중 네이버 임베딩(Neighbor Embedding 이하 NE) 기법의 기본 원리는 지역적 선형 임베딩이라는 매니폴드 학습방법의 개념과 같다. 그러나 네이버 임베딩의 빈약한 일반화 능력으로 인하여 알고리즘의 성능을 크게 저하시킨다. 이유는 국부학습 데이터 집합의 크기가 너무 작아서 NE 알고리즘의 성능을 현저히 저하시킨다. 본 논문에서는 이와 같은 문제점을 해결하기 위해서 일반화 능력이 뛰어난 Support Vector Regression(이하 SVR)기반 개선된 NE를 제안하였다. 저해상도 입력 패치가 주어지면 SVR 기반 개선된 NE를 이용하여 고해상도의 해당 화소 값을 예측하였다. 실험을 통하여 제안된 기법이 기존의 보간법 및 NE 기법 등에 비해 정량적인 척도 및 시각적으로 향상된 결과를 보여 주었다.
본 논문에서는 SAR (Synthetic Aperture Radar) 영상에 SVD (Singular Value Decomposition) - Pseudo Spectrum 알고리즘을 적용하고 그 성능을 기존 알고리즘과 비교한다. 이 논문의 목적은 SAR 영상의 해상도 및 목표물 분해능을 높이고자 하는 것이다. 본 논문에서는 신호 성분으로 이루어진 Hankel Matrix와 SVD (Singular Value Decomposition) 방법을 사용하여 잡음에 강인하고 sidelobe이 적으며 스펙트럼 추정에서 해상도를 높인 SVD-Pseudo Spectrum 방법을 제안하였다. 또한 분해될 목표물을 모델링하여 알고리즘의 성능을 분석하고 SVD-Pseudo Spectrum 방법이 기존의 퓨리에 변환 기반 방법과 고해상도 기술 기반의 MUSIC 방법보다 더 좋은 성능을 가짐을 보인다.
Images were taken under various weather such as rain, haze, snow often show low visibility, which can dramatically decrease accuracy of some tasks in computer vision: object detection, segmentation. Besides, previous work to enhance image usually downsample the image to receive consistency features but have not yet good upsample algorithm to recover original size. So, in this research, we jointly implement removal streak in heavy rain image and super resolution using a deep network. We put forth a 2-stage network: a multi-model network followed by a refinement network. The first stage using rain formula in the single image and two operation layers (addition, multiplication) removes rain streak and noise to get clean image in low resolution. The second stage uses refinement network to recover damaged background information as well as upsample, and receive high resolution image. Our method improves visual quality image, gains accuracy in human action recognition task in datasets. Extensive experiments show that our network outperforms the state of the art (SoTA) methods.
Kim, Joo-Ho;Lee, Yong-Woon;Hwang, Wook-Yeon;Shima, Takayuki;Chung, Chong-Sam
정보저장시스템학회논문집
/
제3권3호
/
pp.123-125
/
2007
We report the readout stability improvement results of super-resolution near field structure (Super-RENS) writeonce read-many (WORM) disk at a blue laser optical system. (Laser wavelength 405nm, numerical aperture 0.85) By using diffusion barrier structure (GeSbTe sandwiched by GeN) and high transition temperature recording material ($BaTiO_3$), material diffusion of phase change layer and recording mark degradation were greatly improved during high power (Pr=2.0mW) readout process up to $1{\times}10^5$ times.
영상의 해상도가 빠른 속도로 증가하기 때문에 계속된 전송 대역폭의 증가에도 불구하고 여전히 효과적인 영상 압축 방법에 대한 연구의 요구가 계속 되고 있다. 이와 같은 요구를 충족하기 위해서 영상의 해상도를 줄인 뒤 압축하여 전송한 뒤에 복원 시에 초해상화 기법을 사용하여 원 해상도로 복원하는 방법에 대한 연구가 제안되었다. 이 방법은 입력 영상의 해상도를 낮추기 때문에 동일한 크기로 압축한다고 할 때, 픽셀 당 비트의 수가 증가되어 영상 압축에서 발생되는 손실을 줄여 복원 영상을 화질을 높일 수 있다. 하지만, 이러한 초해상화를 이용한 비디오 압축 방법의 경우 모든 목표 전송 대역에서 효과적인 것이 아니다. 영상 해상도를 줄이면서 발생되는 손실의 크기와 압축에서 발생되는 손실의 크기를 비교해서 영상 압축에서 발생되는 왜곡이 더 큰 경우에만 기존 압축 성능보다 향상된 결과를 얻을 수 있다. 특히, HEVC의 경우 이전의 표준 압축에 비해 상당히 높은 압축 성능을 가지고 있기 때문에 압축 왜곡이 더 커지는 경우가 상당히 저 대역폭 전송 에서만 생기는 것을 실험적으로 확인할 수 있었다. 본 논문에서는 다양한 영상에서 HEVC 기반 초해상화를 이용한 비디오 코딩을 적용해보고 효과적으로 적용될 수 있는 목표 대역폭을 측정해보았다.
To increase the high-density data storage, a new technique of Super-resolution near-field structure (Super-RENS) consisted of glass/SiN/Sb or AgOx/SiN has been proposed and investigated intensively as a promising structure for near-field ultrahigh-density optical storage. Hence it is important to determine the optical properties of AgOx by using ellipsometry. AgOx thin films were prepared by using magnetron sputtering technique while oxygen flow rate was varied, and the film growth of AgOx were monitored by using in situ ellipsometer. (omitted)
We report the random pattern characteristics of the super resolution near field structure(Super-RENS) write once read-many(WORM) disc at a blue laser optical system(laser wavelength 405nm, numerical aperture 0.85) and the Super-RENS read only memory(ROM) disc at a blue laser optical system(laser wavelength 659nm, numerical aperture 0.65). We used the WORM disc of which carrier-to-noise ratio (CNR) of 75nm is 47dB and ROM disc of which carrier-to-noise ratio (CNR) of 173nm is 45dB. We controlled the equalization (EQ) characteristics and used advanced partial-response maximum likelihood (PRML) technique. We obtained bit error rate (bER) of 10-3 level at 50GB WORM disc and bite error rate of 10-4 level at 50GB level ROM disc. This result shows high feasibility of Super-RENS technology for practical use.
We report the random pattern characteristics of the super resolution near field structure(Super-RENS) write once read-many(WORM) disc at a blue laser optical system(laser wavelength 405nm, numerical aperture 0.85) and the Super-RENS read only memory(ROM) disc at a blue laser optical system(laser wavelength 659nm, numerical aperture 0.65). We used the WORM disc of which carrier-to-noise ratio(CNR) of 75nm is 47dB and ROM disc of which carrier-to-noise ratio(CNR) of 173nm is 45dB. We controlled the equalization(EQ) characteristics and used advanced partial-response maximum likelihood(PRML) technique. We obtained bit error rate(bER) of 10-3 level at 50GB WORM disc and bite error rate of 10-4 level at 50GB level ROM disc. This result shows high feasibility of Super-RENS technology for practical use.
IEIE Transactions on Smart Processing and Computing
/
제3권5호
/
pp.271-274
/
2014
Bayesian based Multi-Frame Super-Resolution (MF-SR) has been used as a popular and effective SR model. On the other hand, the texture region is not reconstructed sufficiently because it works on the spatial domain. In this study, the MF-SR method was extended to operate on the frequency domain to improve HF information as much as possible. For this, a spatially weighted bilateral total variation model was proposed as a regularization term for a Bayesian estimation. The experimental results showed that the proposed method can recover the texture region more realistically with reduced noise, compared to conventional methods.
본 논문에서는 고해상 피치검출을 이용해서 정확한 피치를 찾고 각 피치 주기에서의 상관함수와 문턱값을 비교하여 한국어 음성신호를 음소단위로 분리하는 알로리듬을 제안한다. 제안된 알고리듬의 특성은 정확하고 고신뢰도를 갖으며, 변이구간이나 무음구간도 구분할 수 있다. 이 알고리듬은 음소단위로 분리하여 코드북을 설계하는 백터양자화와 음성인식 분야에 적용된다. 본 논문에서 제안한 알고리듬은 PC386/DX 상에서 386/MATLAB으로 실행한 결과 피치주기를 정확히 찾고 음소별로 분리가 가능함을 알 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.