Ellipsometric Investigation of Optical Property of AgOx mask layer for Super-RENS Application

Xuezhe Li, Sang Jun Kim, Sang Youl Kim
Department of Molecular Science and Technology, Ajou University
leexuezhe@hanmail.net

To increase the high-density data storage, a new technique of Super-resolution near-field structure (Super-RENS) consisted of glass/SiN/Sb or AgOx/SiN has been proposed and investigated intensively as a promising structure for near-field ultrahigh-density optical storage. Hence it is important to determine the optical properties of AgOx by using ellipsometry. AgOx thin films were prepared by using magnetron sputtering technique while oxygen flow rate was varied, and the film growth of AgOx were monitored by using in situ ellipsometer. The optical contants of as-deposit AgOx were determined by spectroscopic ellipsometry. The temperature dependence of AgOx was observed in term of α, β by single wavelength ellipsometry. The variation of optical constants is discussed versus oxygen composition in AgOx.

Figure 1. (a) The growth curve of AgOx monitored in real time by using ellipsometry with different oxygen flow rate. (b) The composition of AgOx were measured using Rutherford Back Scattering spectroscopy(RBS).
Figure 2. The refractive index (a) and the extinction coefficient (b) of AgOx determined by using spectroscopic ellipsometry.

Figure 3. The temperature dependence of ellipsometric constants α, β, (a) oxygen flow rate at 5 sccm, (b) oxygen flow rate at 8 sccm.

References: